
VITA: ViT Acceleration for Efficient 3D Human Mesh Recovery via
Hardware-Algorithm Co-Design

Shilin Tian1, Chase Szafranski1, Ce Zheng1, Fan Yao1, Ahmed Louri2, Chen Chen1, Hao Zheng1
1University of Central Florida, 2The George Washington University

{shilin.tian,chase.szafranski,ce.zheng,fan.yao}@ucf.edu,louri@gwu.edu,chen.chen@crcv.ucf.edu,hao.zheng@ucf.edu

ABSTRACT
Vision Transformers (ViTs) have emerged as a promising solution
to enable efficient 3D Human Mesh Recovery (HMR) in augmented
and virtual reality (AR/VR) applications. Despite many advance-
ments in algorithm design, it remains a challenge to efficiently
accelerate ViT-based HMR due to high computational complexity,
substantial memory footprint, and compromised data locality. In
this paper, we propose VITA, a hardware and algorithm co-design
framework for ViT-based HMR with improved performance and
energy efficiency. Specifically, on the algorithm side, we propose
an average pooling model to replace conventional multi-head at-
tention, which is further optimized with improved data locality. On
the hardware side, we propose an accelerator architecture that can
efficiently support various dataflows and computations demanded
by pooling, normalization, and convolution operations. We evalu-
ate the proposed VITA, and the evaluation result shows that the
proposed VITA design can achieve 5.05× and 69.12× speedups on
average over the state-of-the-art GPUs and CPUs on HMR tasks.
ACM Reference Format:
Shilin Tian1, Chase Szafranski1, Ce Zheng1, Fan Yao1, Ahmed Louri2, Chen
Chen1, Hao Zheng1. 2024. VITA: ViT Acceleration for Efficient 3D Human
Mesh Recovery via Hardware-Algorithm Co-Design. In 61st ACM/IEEE
Design Automation Conference (DAC ’24), June 23–27, 2024, San Francisco,
CA, USA.ACM,NewYork, NY, USA, 6 pages. https://doi.org/10.1145/3649329.
3656518

1 INTRODUCTION
Human Mesh Recovery (HMR) has been widely deployed in many
critical computer vision applications, including gaming, artificial/vir-
tual reality (AR/VR), and human-computer interaction [1, 2]. HMR
can efficiently reconstruct 3D human shapes and poses frommonoc-
ular images, driven by recent advancements in deep learning. How-
ever, conventional deep neural networks still fall short in HMR
performance due to the complex articulation of the human body,
varying levels of occlusion, and the ambiguity of perception [3, 4].

With the recent surge of Vision Transformer (ViT) [5], attention-
based models have been explored to enhance the performance of
HMR tasks. However, the computation complexity and large model
size of ViT-based HMR hinder its deployment in real-world appli-
cations, particularly in embedded systems like headsets. To address

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DAC ’24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0601-1/24/06. . . $15.00
https://doi.org/10.1145/3649329.3656518

~92.89% Reduction

~86.22% Reduction
~45.69% Reduction

Figure 1: HMR performance comparisons on 3DPW dataset.
The scaling of PA-MPJPE [7] (Procrustes Analysis-Mean-Per-
Joint-Position-Error, number of parameters, number of MAC
operations, and GPU inference time for ViT-based HMR.

this challenge, prior works [3, 6] have been proposed to reduce
ViT model size and the number of Multiply-Accumulate (MAC)
operations. For instance, POTTER [3] achieves a 92.8% and 86.2%
reduction in model size and MAC operations, respectively, com-
pared to METRO [6] on GPUs. However, this substantial reduction
in model size and MAC operations translates to only a 45% re-
duction in inference time, as shown in Fig. 1. More importantly,
achieving the desired inference speed — greater than 30 frames
per second (fps) — for state-of-the-art ViT-based HMR on high-end
GPUs remains a challenge, let alone on AR/VR headsets.

Even though specialized accelerators [8, 9] have been proposed
for ViT models, they have limited applicability to support HMR
tasks efficiently. For example, ViTCod [8] reordered the attention
maps to find either denser or sparser fixed patterns, improving com-
putation efficiency. Vitality [9] replaced vanilla softmax attention
with a linear attention and introduced a sparse approximated atten-
tion, thereby reducing computation requirements. Unfortunately,
prior accelerators are customized for multi-head attention-based
transformer models. Neither previous algorithms nor architectures
have direct applicability to HMR tasks.

To this end, we aim to explore an efficient algorithm and hard-
ware co-design to push the performance envelope of ViT-based
HMR, enabling real-time inference capability in resource-constrained
devices. Through our application profiling, we observed that cur-
rent ViT-based HMR models suffer from poor data locality even
though MAC operations and model size have been theoretically
reduced. Specifically, POTTER [3] involves redundant and irregular
memory access due to the reshaping operations of input features.
To address the mentioned issues, we propose VITA, a hardware
and algorithm co-design to reduce model size and MAC operations,
and optimize data locality and DRAM access. Our contributions are
summarized as follows:

1

https://doi.org/10.1145/3649329.3656518
https://doi.org/10.1145/3649329.3656518
https://doi.org/10.1145/3649329.3656518

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Shilin Tian1 , Chase Szafranski1 , Ce Zheng1 , Fan Yao1 , Ahmed Louri2 , Chen Chen1 , Hao Zheng1

Patch
Split

Patch
Em

erging

APB

Patch
M

erging

APB

Patch
M

erging

APB

Patch
M

erging

APB

Stage#1 Stage#4

{𝐷1,
!
"
, #
"

} {𝐷2,
!
$
, #
$

} {𝐷3,
!
%&

, #
%&

} {𝐷4,
!
'(

, #
'(

}

Patch
Split

Patch
Split

APB APB APB

Stage#2

{𝐷1,
!
"
, #
"

}
Stage#3

{𝐷1,
!
"
, #
"

}
Stage#4

{𝐷1,
!
"
, #
"

}

HMR
Heads

C
lassification
H
eads

Input: {3, H, W}

Patch
Merging

Patch
Split

:

:

C

N

U C

: Element-wise Addition

: Normalization

N

U : Upsampling

C : Convolution

Stage#2 Stage#3

Figure 2: The overview of the proposed vision transformer
architecture.

• To the best of our knowledge, VITA is the first ViT accel-
erator designed for Human Mesh Recovery (HMR) that in-
corporates various hardware constraints into the algorithm
design.

• On the algorithm side, we propose an average pooling block
(APB) to prune and refine the conventional multi-head at-
tention model. The proposed APB is designed to efficiently
capture cross-channel spatial correlations without compro-
mising the model accuracy. Moreover, the proposed APB
not only supports regular and efficient memory access, but
also preserves comparable model size and MAC count as
compared to counterparts.

• On the hardware side, VITA presents a unified PE architec-
ture capable of handling a variety of ViT operations including
pooling, normalization, and convolution. The proposed PE
array can efficiently optimize spatial and temporal data local-
ity of various pooling operations, thereby reducing DRAM
access significantly.

We evaluate the proposed VITA, and the evaluation result shows
that the proposed VITA design can achieve 5.05× and 69.12× speedups
on average over the state-of-the-art GPUs and CPUs on HMR tasks.

2 PROPOSED VITA ALGORITHM
2.1 Overall Architecture of the Proposed ViT for

HMR
In this work, we introduce our customized transformer architec-
ture, specifically tailored for HMR tasks, as depicted in Fig 2. This
design aims to achieve two critical goals. Firstly, it maintains a
delicate balance between capturing global, fine-grained informa-
tion at low resolutions and processing high-resolution patches for
local feature extraction within the image. Secondly, the architecture
is optimized for hardware, enhancing efficiency in computation
complexity, memory requirement, and data locality.

Inspired by POTTER [3], our approach incorporates a dual-
stream structure. To capture more global information at lower reso-
lutions, as illustrated in Fig. 2, we utilize a total of 4 average pooling
blocks. The employed blocks in our design hierarchically reduce
the patch size, following a similar rationale to that of the Swin
transformer block design [10]. Consequently, the upper stream pro-
gressively reduces the number of patches, while the bottom stream
consistently maintains high-resolution feature representation. The
upper stream’s global features are then fused with the local features
from the bottom stream via patch split blocks.

For example, in the upper stream, the output of "stage 2" is
denoted as {𝐷2, H8 ,

W
8 }, effectively reducing the total patch count to

N MIX
MAP N MLP

W

H

D

(a) Schematic of the Average Pooling Block

Pooling Attention Layer Feedforward Network (FFN)

M0: {D, H, W}

Pooling2

Pooling1
Mpw:{D, H, 2}

Mph:{D, 2, W}
Matrix

Multiply
C

Averaging C
Mpa:{1, H, W}

N

M3: {D,H,W}
Patch-wise Pooling

Position-wise Average Pooling

(b) Schematic of the Mixed Average Pooling Block (MAP)

M1: {D, H, W}

M2: {D, H, W}

M0: {D, H, W}

N : Layer Normalization

C : Depth-wise Convolution

M3: {D, H, W} Mout: {D, H, W}

Figure 3: The overview of average pooling block (APB).

Patch 1

Patch 2

Pa
tc

h
3 Patch 4

W

H

D

W

H

D

(a) Patch-wise Pooling Path

(b) Position-wise Average Pooling Path

Row
Pooling

Spatial
Structure
Preserved

Position 0 Position 1

Position 2 Position3

M0: {D, H, W}

M0: {D, H, W}

Mpa:{1, H, W}

Mpw: {1, H, 2}

Mph: {1, 2, W}

M1: {D, H, W}

Capture Correlation
across Channels

Convolution

Iterate D channels

Pooling

M2: {D, H, W}

Column
Pooling

Weight
Kernel

{D, 3, 3}

Figure 4: The illustration of the proposed APB block: (a)
Patch-wise pooling computation and (b) Position-wise aver-
age pooling computation.
𝐻 ·𝑊
8×8 and lowering the feature resolution to

[
𝐻
8 ,

𝑊
8
]
. This reduction

process is consistently applied to subsequent stages before fusion
with the bottom stream.

Similarly, the bottomHMR streampath comprisesmultiple stages,
each connected to the basic stream through a patch split block. The
upper stream’s merged patches are added to this path, preserving
the high-resolution feature representation. For instance, the output
for the third and fourth stages retains the same feature resolutions
as {𝐷1, H4 ,

W
4 }.

To optimize the design for a hardware-friendly execution, we
will introduce our proposed average pooling block (APB) to address
the irregular memory access problem during the pooling operation
in previous designs.

2.2 Proposed Average Pooling Block
Employing pooling operations exclusively for patch mixing, this
method surpasses numerous complex transformer-based models,
providing enhanced computational and memory efficiency. Al-
though pooling operations are known for their ability to reduce
memory footprints and the number of MAC operations, as dis-
cussed in [3], they necessitate access to varying regions of input
features. This requirement, without strategic optimizations, can
result in irregular memory access patterns and poor data locality.
Traditional designs often overlook the detrimental effects of such
irregularities. To address this challenge, we introduce an innovative
average pooling block.

2

VITA: ViT Acceleration for Efficient 3D Human Mesh Recovery via Hardware-Algorithm Co-Design DAC ’24, June 23–27, 2024, San Francisco, CA, USA

s

Off-Chip DRAM

Out Ft.
GLB

Weight
GLBBank

0
Bank

1
Bank

4
Bank

3

Feature GLB

(a) Accelerator Micro-Architecture with 4X4 PEs

G
eLU

 U
nit

Nonlinear
Func. Unit

Inverse Sqrt R
oot U

nit

(c) MAC Unit Micro-Architecture

(b) 16 MACs Array within one PE

Multiplier Shifter by 1 Adder

PE
MAC
Array

PE
MAC
Array

PE
MAC
Array

PE
MAC
Array

PE
MAC
Array

PE
MAC
Array

PE
MAC
Array

PE
MAC
Array

PE
MAC
Array

PE
MAC
Array

PE
MAC
Array

PE
MAC
Array

PE
MAC
Array

PE
MAC
Array

PE
MAC
Array

PE
MAC
Array

Feature Slice#15 (FS15)

MAC 2MAC 0 MAC 1 MAC 15. . .

Weights
Copy (W)

N
oC

InterfaceFeature Slice#0 (FS0)

. . .

PE Broadcast

Unicast

FS0 FS1 FS2 FS15WWWW Partial
Sum

. . .

Psum
. Buffer

(Local)

M
U

X

MUX

M
U

X

Psum
. Buffer

(N
eighbor)

MAC

M
U

X

Feature
Buffer

D
EM

U
X

Weight Buffer

D
EM

U
X

M
U

X

D
EM

U
X

N
orm

alization

Average Pooling

Figure 5: Overall VITA accelerator architecture.

This new pooling operation not only refines data access pat-
terns but also effectively models the patch mixing functionality
inherent in Attention layers [5], enhancing accuracy. As shown
in Fig. 3, our VITA model employs two separate pathways in the
APB to extract features from the input images. The APB consists of
patch-wise and position-wise average pooling paths. Patch-wise
pooling focuses on the overall structure by analyzing inter-patch
correlations, while position-wise average pooling delves into de-
tailed features within each patch. This fine-grained control over
the patches ensures a comprehensive understanding of the input
with lower computational and memory requirements.

Specifically, in the Patch-wise Pooling, This stream captures
inter-patch correlations while preserving their spatial structure [11].
As depicted in Fig. 4 (a), this process involves applying a pooling
module that computes attention over compressed 2D features along
height and width dimensions. This approach effectively encapsu-
lates the spatial relationships between patches. It is achieved by
reducing the number of rows and columns of input tensors through
pooling operations applied over the rows and columns associated
with the respective patches.

On the other hand, the Position-wise Average Pooling is de-
signed to explore dependencies within the embedding dimensions
of each patch, retaining their 2D spatial structure as illustrated
in Fig. 4 (b). Unlike baseline ViT adaptations [6, 12] that flatten
these features, we design this pathway that keeps the 2D structure,
enabling a nuanced analysis of the intra-patch feature correlations
for a deeper understanding of each patch’s characteristics.

Therefore, the patch-wise pooling attention conserves the spatial
positioning of each patch while capturing inter-patch relationships.
Simultaneously, the position-wise average pooling attention pre-
serves each patch’s spatial embedding for intricate modeling of
feature correspondences. The outputs from both pooling then pass
through a depth-wise convolution layer [13], forming𝑀1 and𝑀2
before progressing to the Feedforward network.

3 PROPOSED VITA ACCELERATOR DESIGN
3.1 Overall Architecture
The proposed VITA accelerator architecture can support a variety
of operations in the proposed ViT algorithm, including normaliza-
tion, pooling, and convolution. The overall accelerator architecture
is shown in Fig. 6. Specifically, the proposed VITA architecture con-
sists of a nonlinear function unit, a global buffer (GLB) for output,

(a) Datapath of Patch-wise Pooling operation

(c) Datapath of Matrix Multiplication operation (d) Datapath of Depth-wise Convolution operation

(b) Datapath of Position-wise Average Pooling operation

Psum
. Buffer

(Local)

M
U
X

M
U
X

Psum
. Buffer

(N
eighbor)

MAC

M
U
X

Feature
Buffer

D
EM

U
X

Weight Buffer

D
EM

U
X

M
U
X

D
EM

U
X

Psum
. Buffer

(Local)

M
U
X

M
U
X

Psum
. Buffer

(N
eighbor)

MAC

M
U
X

Feature
Buffer

D
EM

U
X

Weight Buffer

D
EM

U
X

M
U
X

D
EM

U
X

Psum
. Buffer

(Local)

M
U
X

MUX

M
U
X

Psum
. Buffer

(N
eighbor)

MAC

M
U
X

Feature
Buffer

D
EM

U
X

Weight Buffer

D
EM

U
X

M
U
X

D
EM

U
X

Psum
. Buffer

(Local)

M
U
X

MUX

M
U
X

Psum
. Buffer

(N
eighbor)

MAC

M
U
X

Feature
Buffer

D
EM

U
X

Weight Buffer

D
EM

U
X

M
U
X

D
EM

U
X

Figure 6:MAC configurations for distinct operations in VITA.

weight, and input, and a processing element (PE) array. As various
pooling operations involve different memory access patterns, the
input GLB adopts a multi-banked buffer design to enhance end-
point bandwidth for input features. The GLB is connected to the
nonlinear function unit and the PE array via a crossbar network.

3.1.1 Proposed PE Architecture. The proposed PE array can be used
to simultaneously support distinct operations and their dataflows.
Specifically, as shown in Fig. 6, we use a 4 × 4 PE array to illustrate
the concept, in which PEs are connected in a torus topology. Each
PE consists of 16 multiply-accumulation (MAC) units for parallel
computations and local buffers for input features, weights, and
partial sums. We further present a novel MAC unit to support
various computations tailored for our proposed transformer model.
The proposed MAC unit can support square operation, division by
2 using a shifter, accumulation, and multiplication. This enables
our MAC units to efficiently handle a variety of operations in one
unified PE, which could improve PE utilization and data locality.

Walkthrough Examples: As illustrated in Fig. 6, the MAC datap-
ath can be configured to support four representative operations -
patch-wise pooling, position-wise pooling, matrix multiplication,
and depth-wise convolution. For example, to support patch-wise
pooling operations, the feature and partial sum buffers are con-
nected to the adder as shown in Fig. 6 (a), and the summation of
one patch of data will be further divided by its patch size. The MAC
architecture can be further configured for position-wise pooling
operations as shown in Fig. 6 (b). Furthermore, it supports another
two operation models for general matrix multiplication (Fig. 6 (c))
and convolution (Fig. 6 (d)) operations. The matrix multiplication is
used to reconstruct the matrix dimensions after the pooling layers,
as such both inputs are stored in the partial sum buffers, whereas
convolution operation needs both weight and input matrices.

3.1.2 Inverse Square Root Computation. We implement the inverse
square root computation with a Lookup Table methodology, opti-
mized for both efficiency and precision. This approach is based on a
pre-populated LUT [14], encompassing a wide spectrum of precom-
puted inverse square root values to cover the anticipated range of
input data. Once the variance value is received, the proposed unit
will identify the nearest candidate and retrieve its approximated
variance value from LUT. If a higher precision is needed, the values
in LUT could be further refined offline.

3

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Shilin Tian1 , Chase Szafranski1 , Ce Zheng1 , Fan Yao1 , Ahmed Louri2 , Chen Chen1 , Hao Zheng1

e08 e09
e
0
12

e
0
13

e04 e05 e06
e08 e09

e
0
10e

0
12

e
0
13

e
0
14

e00 e01 e02 e03

e04 e05 e06 e07

e08 e09 e 010 e 011

e 012 e 013 e 014 e 015

e08 e09
e
0
12

e
0
13

e04 e05 e06
e08 e09

e
0
10e

0
12

e
0
13

e
0
14

e00 e01 e02 e03

e04 e05 e06 e07

e08 e09 e 010 e 011

e 012 e 013 e 014 e 015

e08 e09
e
0
12

e
0
13

e04 e05 e06
e08 e09

e
0
10e

0
12

e
0
13

e
0
14

e00 e01 e02 e03

e04 e05 e06 e07

e08 e09 e 010 e 011

e 012 e 013 e 014 e 015

e08 e09
e
0
12

e
0
13

e04 e05 e06
e08 e09

e
0
10e

0
12

e
0
13

e
0
14

e120 e121 e122 e123
e124 e125 e126 e127
e128 e129 e1210 e1211
e1212 e1213 e1214 e1215

e08 e09
e
0
12

e
0
13

e04 e05 e06
e08 e09

e
0
10e

0
12

e
0
13

e
0
14

e00 e01 e02 e03

e04 e05 e06 e07

e08 e09 e 010 e 011

e 012 e 013 e 014 e 015

e08 e09
e
0
12

e
0
13

e04 e05 e06
e08 e09

e
0
10e

0
12

e
0
13

e
0
14

e00 e01 e02 e03

e04 e05 e06 e07

e08 e09 e 010 e 011

e 012 e 013 e 014 e 015

e08 e09
e
0
12

e
0
13

e04 e05 e06
e08 e09

e
0
10e

0
12

e
0
13

e
0
14

e00 e01 e02 e03

e04 e05 e06 e07

e08 e09 e 010 e 011

e 012 e 013 e 014 e 015

e08 e09
e
0
12

e
0
13

e04 e05 e06
e08 e09

e
0
10e

0
12

e
0
13

e
0
14

e00 e01 e02 e03
e04 e05 e06 e07
e08 e09 e 0

10 e 0
11

e 0
12 e 0

13 e 0
14 e 0

15

(a) Input Features

e2 e3

e4 e5 e6 e7

e8 e9 e10 e11

e12 e13 e14 e15

e0 e1

(c) Dataflow for position-wise average pooling

e00 e10 e20 e30

e40 e50 e60 e70

e80 e90 e100 e110

e120 e130 e140 e150

e00 e10 e20 e30

e40 e50 e60 e70

e80 e90 e100 e110

e120 e130 e140 e150

Data with the same channel
assigned to each PE

D
= 1
6

(b) Data distribution for patch-wise pooling

W

H

Data with the same position
assigned to each PE

Aggregate with the vertical rings Aggregate with the horizontal ring
An example to get the sum value at Position 0

e2 e3

e4 e5 e6 e7

e8 e9 e10 e11

e12 e13 e14 e15

e0 e1

Channel
Position

e𝑥𝑦

Figure 7: (a) An example of input features, (b) dataflow for patch-wise pooling, and (c) dataflow for position-wise average
pooling with an aggregation example for elements at position 0.

3.1.3 GeLUApproximation. Many state-of-the-art transformermod-
els, such as SWIN transformer [10], employ the Gaussian Error
Linear Unit (GELU) activation function [15] for their fully con-
nected layers and MLPs instead of the traditional ReLU function.
GELU, often considered a smoother variant of ReLU, offers en-
hanced non-linearity that contributes to faster and more effective
convergence. The original formulation of GELU is presented as
equation 1 [15], with an approximation provided in equation 2 [15].
However, implementing GELU activation using these equations
imposes considerable hardware overhead.

GELU(𝑥) = 𝑥 · Φ(𝑥) = 0.5𝑥
(
1 + erf

(
𝑥
√
2

))
(1)

GELU(𝑥) ≈ 0.5𝑥
(
1 + tanh

(√︂
2
𝜋

(
𝑥 + 0.044715𝑥3

)))
(2)

In the proposed accelerator, this challenge is addressed within a
dedicated nonlinear function unit. This unit utilizes a local buffer to
store precomputed GELU values based on equation 2. Upon receiv-
ing feature elements, the unit sequentially searches for the nearest
value in the LUT [14], retrieves the approximated GELU value, and
then returns the processed data to the global buffer. This approach
efficiently approximates GELU activation while mitigating the com-
putational and memory overhead typically associated with direct
GELU computation.

3.2 Proposed Dataflow and Mapping
Dataflow exploitation [16] is a critical step that can determine the
off-chip memory access. The proposed VITA accelerator architec-
ture can efficiently support a variety of dataflows, thus improving
data locality and reducing DRAM access. We will use the following
examples to illustrate the proposed dataflow for various normaliza-
tion, pooling, and convolution operations.

3.2.1 The proposed Dataflow for APB. Pooling layers are gener-
ally structured in a regular pattern, also reflected in their memory
access. The major problem is that conventional pooling attention
includes multiple pooling operations across different matrix dimen-
sions. Consequently, different memory access patterns of pooling
operations could lead to poor data locality. To this end, we propose
a customized dataflow for the proposed APB to unify the memory
access patterns of multiple pooling operations with optimized data
locality and reuse.

For example, as shown in Fig. 7 (b), all the elements of each
channel (𝐷) of input features (𝐷 × 𝐻 ×𝑊) are loaded into each PE.
This is because patch-wise pooling is performed individually on
each channel. As such, each PE can perform patch-wise pooling
without any inter-PE communication.

On the other hand, position-wise pooling operation needs to
collect the elements across channels as shown in Fig. 7 (c). This
requires an accumulation operation among all the PEs, which in-
evitably increases the bandwidth requirement per link. To address
this issue, we leverage the 2D-ring allreduce algorithm [17] to re-
duce link bandwidth requirement.

3.2.2 The proposed dataflow for normalization. As mentioned, nor-
malization is a critical step in the proposed ViT model. The nor-
malization algorithm used in this accelerator is a layer normaliza-
tion [18]. As such, each element in the layer is normalized with
the mean and variance computed across all elements, according to
Equation 3 [18].

𝑦 =
𝑥 − 𝐸 [𝑥]√︁
𝑉𝑎𝑟 [𝑥] + 𝜖

∗ 𝛾 + 𝛽 (3)

where𝛾 and 𝛽 are learnable parameters for input shape and element-
wise affine information, and 𝜖 is a value added to the denominator
for numerical stability.

The primary issue with layer normalization lies in the calculation
of the mean, necessitating the aggregation of all elements within the
layer. Much like the dataflow for APB, we utilize a torus topology
to facilitate the reduction operations needed to compute the mean
value. For instance, each PE calculates the mean of elements housed
in its local buffer. This computed mean is then propagated to the
subsequent PE via vertical rings. Following vertical accumulation,
a horizontal-wise aggregation is executed to derive the final mean
value. Subsequently, this mean is transmitted to the inverse square
root unit, and the output result is broadcast to all PEs.

3.2.3 The proposed dataflow for Convolutional Neural Network.
The selection of dataflow has been extensively studied in prior
works, as it can significantly affect DRAMaccess. Typically, dataflow
for CNNs is subject to many factors, including matrix size, tiling
factors, and others. In this work, we select output stationary and
weight stationary dataflows for the basic and HMR streams.

Output stationary dataflow for convolutional layers at the basic
stream: In the basic stream, the input matrix is partitioned and
distributed to all the PEs across 𝐷 dimension. As such, the weight

4

VITA: ViT Acceleration for Efficient 3D Human Mesh Recovery via Hardware-Algorithm Co-Design DAC ’24, June 23–27, 2024, San Francisco, CA, USA

Table 1: Design Parameters of VITA Accelerator
Accelerator

Configuration
PE

Configuration
Parameters Parameters

of PEs 8 × 8 # of MACs 64
Feature GLB 262 KB Feature LocalBuf. 16,384B
Weight GLB 62 KB Weight LocalBuf. 264 B
Output GLB 262 KB Psum LocalBuf. 8196B
Clock Freq. 330 MHz

Bandwidth Configuration for Simulation
DRAM: 64 GB/s GLB to PE Array: 80 GB/s

matrix is also partitioned on 𝐷 dimension which will be distributed
to each PE. Given such a spatial parallelism strategy, no partial sum
accumulation is needed between PEs. As such, we select the output
stationary to support temporal partial sum accumulation within
the PE.

Weight stationary dataflow for convolutional layers at the HMR
stream: In the HMR stream, the input matrix is spatially partitioned
and sent all the PEs, in which attributes 𝐷 , 𝐻 , and𝑊 are spatially
parallelized. As mentioned earlier, a depth-wise convolution will
be performed to recover the full dimensions of the feature matrix.
As such, the weight matrix (𝐷 × 3 × 3) will be duplicated in every
PE. The partial sums produced by each PE need to be accumulated
spatially. Consequently, we select the weight stationary dataflow
to improve the temporal reuse of the weight matrix.

4 EXPERIMENT RESULTS
4.1 Experiment Setting
Dataset and Training configurations:We evaluate the proposed
VITA model as compared to state-of-the-art Vision Transformer
(ViT)-based models. For image classification, we compare VITA
against multiple models, including RSB-Resnet-18/34 [19], ResMLP-
S12 [20], and PoolFormer_S12 [3]. To evaluate the performance of
humanmesh recovery, VITA compares itself with POTTER_HMR [3],
METRO [6], and FASTMETRO [12]. The datasets include ImageNet-
1K [21] for image classification and 3DPW[22] for HMR. Following
the training regimen outlined in [23], we pre-trained the VITA
model with the basic stream on the ImageNet-1K dataset for 310
epochs and fine tune the entire VITA model on Human3.6M after-
wards. During the pre-training process, we set the peak learning
rate to lr = 2 × 10−3 and used a total batch size of 1024.
Baseline architectures: To assess the performance of the VITA
accelerator, particularly for image classification and Human Mesh
Recovery, we include several high-performance computing plat-
forms to evaluate the performance the proposed VITA accelerator
architecture, which includes a server-class CPU Xeon(R) Gold 6240
CPU, and two advanced GPUs: the NVIDIA V100 and the NVIDIA
H100 GPU. Given that existing ViT accelerators do not support
ViT-based HMR, we are unable to perform a fair comparison.
Accelerator Configurations: The design of VITA accelerator is
implemented with Verilog RTL for synthesis, and we developed a
customized simulator to fairly reflect the hardware configurations
as shown in table 1. In order to ensure a fair and realistic comparison
with actual hardware implementations and to obtain relatively
accurate performance metrics, all parameters were configured to
align closely with feasible values for generic ASIC designs. For

Table 2: Performance comparison on image classification
task. Models are train on training set and the reported top-1
accuracy is obtained from the validation set.

Models
Name Params(M) MACs(G) Top-1 Acc(%)
ViT-L/16 [5] 307 190.7 76.5
RSB-ResNet-18 [19] 12 1.8 70.6
RSB-ResNet-34 [19] 22 3.7 75.5
POTTER_S12 [3] 12 1.8 77.2
VITA 12 1.8 78.08

(a) (b)
Figure 8: The performance comparisons between VITA over
multiple platforms for HMR task.

instance, the clock frequency employed in our design is set at 330
MHz. The GLB size is selected based on the storage needs of input
features for all stages in both basic and HMR streams as illustrated
in Fig. 2. Considering an image size of 3×224×224, the input feature
size for four stages are 64× 64× 64, 128× 32× 32, 320× 16× 16 and
512 × 8 × 8, respectively. As such, we find that a small GLB size of
262KB is sufficient to accommodate the storage demands. However,
a larger local buffer is anticipated due to the fact that patch-wise
pooling computations are executed locally within PE. Regarding
on-chip bandwidth, our configuration tries to saturate bandwidth
of typical DDR4 memory in FPGA with more than 4 channels.

4.2 Evaluation
4.2.1 Evaluation of the Proposed ViT algorithm. The performance
of our VITA model for the image classification task is reported in
Table 2. We compare it with both transformer-based models (ViT-
L/16 [5], POTTER_S12 [3]) and CNN-based models(RSB-ResNet-
18 [19] and RSB-ResNet-34 [19]). RSB-ResNet-34 is trained with
300 epochs, whereas other models are trained within 100 epochs. In
general, VITA achieves an increase of 4.58% in Top-1 accuracy com-
pared to RSB-ResNet-34, while reducing the model size and MAC
operations by 45.45% and 51.35% respectively. When compared
with the transformer-based model, POTTER_S12, VITA slightly
increases the top-1 accuracy with similar model size and MAC op-
erations. Regarding inference performance improvement, Fig. 8 (a)
illustrates that VITA can achieve a speedup of 1.23×, 1.67×, and
1.38× compared to POTTER on CPU, Nvidia V100, and Nvidia H100
platforms, respectively. We use 3DPW dataset to evaluate VITA
performance on HMR tasks. VITA can achieve 77.6, 46.7, 90.2 in
Mean Per Joint Position Error (MPJPE) [24], Procrustes Alignment
(PA-MPJPE) [7], and MPVE [25], which significantly outperforms
METRO and FASTMETRO. The MPJPE, PA-MPJPE, and MPVE of
VITA are slightly higher than that of POTTER (75.0, 44.8, and 87.4).

5

DAC ’24, June 23–27, 2024, San Francisco, CA, USA Shilin Tian1 , Chase Szafranski1 , Ce Zheng1 , Fan Yao1 , Ahmed Louri2 , Chen Chen1 , Hao Zheng1

(a) (b)

Figure 9: (a) The inference latency of VITA accelerator and
other platforms for both image classification and HMR tasks
(b) Area breakdown.

4.2.2 Performance Evaluation of the proposed ViT algorithm on
CPUs and GPUs. As illustrated in Fig. 8 (b), we evaluated the per-
formance of several models, including Metro [6], FastMetro-L [12],
FastMetro-S [12], POTTER [3], and VITA, across various hard-
ware platforms. On the CPU platform, VITA outperforms Metro,
FastMetro-L, FastMetro-L and POTTER by 2.54×, 3.42×, 1.64× and
1.03×, respectively. On the GPU platforms, VITA achieves 3.42×,
2.42×, 2.02× and 1.99× speedups on Nvidia V100 platform, and
3.88×, 2.50×, 2.23× and 1.92× speedups on Nvidia H100 platform
over Metro, FastMetro-L, FastMetro-L and POTTER, respectively.

4.2.3 Performance Evaluation of the proposed VITA accelerator.
To evaluate the performance of VITA accelerator architecture, we
present a detailed performance analysis in Fig. 9 (a). In the Image
Classification, the VITA accelerator can outperform Nvidia H100,
Nvidia V100, and CPU by 4.01×, 4.10×, and 23.05×, respectively.
For the human mesh recovery task, the VITA accelerator achieves
a speedup of 5.05×, 6.29×, and 69.12× against Nvidia H100, Nvidia
V100, and CPU, respectively.

4.2.4 Analysis of Area and Power for VITA accelerator. To assess
the power and area consumption of the VITA accelerator, Synopsys
Design Compiler and the SAED 32nm library were utilized for gate-
level netlist generation, with PrimePower utilized for analyzing
power consumption. The total power consumption of VITA is 6.16W
when functioning at a frequency of 330MHz. Fig. 9 (b) presents
the area breakdown of various VITA’s hardware components. The
global buffer and local buffer together account for more than 76.3%
of the total area. Meanwhile, NoC and PE arrays consume 14.4% of
the total area. In addition, nonlinear function unit and control logic
occupy 5.6% and 3.7% of the total area, respectively.

5 RELATEDWORK
Transformer models have been adapted in various forms for vision
tasks thanks to superior performance [10]. As the first transformer-
based method for human mesh recovery, METRO [6] models vertex-
vertex and vertex-joint interaction using transformer encoders.
MeshGraphormer [26] further combines the graph convolutional
network (GCN) with the transformer to model local and global
interactions among mesh vertices and joints. While METRO and
MeshGraphormer exhibit substantial performance gains over pre-
vious state-of-the-art methods, their computational demands are
noteworthy. To address this, FastMETRO [12] introduces an efficient
encoder-decoder architecture, achieving a commendable balance

between accuracy and computational efficiency with fewer param-
eters and shorter inference times than METRO [6]. Even though
prior algorithms have been proposed to improve transformer-based
HMR, the accelerator design for HMR remains unexplored.

6 CONCLUSION
In this paper, we propose VITA, a hardware and algorithm co-design
framework for ViT-based HMR with much-improved performance
and energy efficiency. To be specific, on the algorithm side, we
propose a mixed pooling attention model optimized with regu-
lar memory access and reduced computation complexity. On the
hardware side, we propose an accelerator architecture capable of
adapting distinctive data movement for various pooling operations.
We evaluate the proposed VITA, and the results show that our de-
sign can achieve 5.05× and 69.12× speedup on average over the
state-of-the-art GPUs and CPUs on HMR tasks.

REFERENCES
[1] Tianyu Luan et al. Pc-hmr: Pose calibration for 3d human mesh recovery from

2d images/videos. In Procc of AAAI, pages 2269–2276. AAAI Press, 2021.
[2] Yating Tian, Hongwen Zhang, Yebin Liu, and Limin Wang. Recovering 3d human

mesh from monocular images: A survey. In TPAMI. IEEE, 2023.
[3] Ce Zheng et al. Potter: Pooling attention transformer for efficient human mesh

recovery. In Proc. of CVPR, 2023.
[4] Yating Tian et al. Recovering 3d human mesh from monocular images: A survey.

pages 15406–15425. IEEE, 2022.
[5] Alexey Dosovitskiy et al. An image is worth 16x16 words: Transformers for

image recognition at scale. In arXiv preprint arXiv:2010.11929, 2020.
[6] Kevin Lin, Lijuan Wang, and Zicheng Liu. End-to-end human pose and mesh

reconstruction with transformers. In Proc. of CVPR, pages 1954–1963, 2021.
[7] Xiaowei Zhou et al. Monocap: Monocular human motion capture using a cnn

coupled with a geometric prior. In TPAMI, pages 901–914. IEEE, 2018.
[8] Haoran You et al. Vitcod: Vision transformer acceleration via dedicated algorithm

and accelerator co-design. In Proc. of HPCA, pages 273–286. IEEE, 2023.
[9] Jyotikrishna Dass et al. Vitality: Unifying low-rank and sparse approximation for

vision transformer acceleration with a linear taylor attention. In Proc. of HPCA,
pages 415–428. IEEE, 2023.

[10] Ze Liu et al. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proc. of ICCV, pages 10012–10022, 2021.

[11] Lingxiang Yin et al. Polyform: A versatile architecture for multi-dnn execution
via spatial and temporal acceleration. In Proc. of ICCD, pages 166–169, 2023.

[12] Junhyeong Cho et al. Cross-attention of disentangled modalities for 3d human
mesh recovery with transformers. In Proc. of ECCV. Springer, 2022.

[13] François Chollet. Xception: Deep learning with depthwise separable convolutions.
In Proc. of CVPR, pages 1251–1258, 2017.

[14] Joonsang Yu et al. Nn-lut: neural approximation of non-linear operations for
efficient transformer inference. In Proc. of DAC, pages 577–582, 2022.

[15] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). In arXiv
preprint arXiv:1606.08415, 2016.

[16] Lingxiang Yin et al. Exploring architecture, dataflow, and sparsity for gcn accel-
erators: A holistic framework. In Proc. of GLSVLSI, page 489–495, 2023.

[17] Lingxiang Yin et al. Aries: Accelerating distributed training in chiplet-based
systems via flexible interconnects. In Proc. of ICCAD, pages 1–9, 2023.

[18] Jimmy Lei Ba et al. Layer normalization. In arXiv preprint arXiv:1607.06450, 2016.
[19] Ross Wightman et al. Resnet strikes back: An improved training procedure in

timm. In arXiv preprint arXiv:2110.00476, 2021.
[20] Hugo Touvron et al. Resmlp: Feedforward networks for image classification with

data-efficient training. In Proc. of ICML, pages 5314–5321. IEEE, 2022.
[21] Jia Deng et al. Imagenet: A large-scale hierarchical image database. In Proc. of

CVPR, pages 248–255. Ieee, 2009.
[22] Timo von Marcard et al. Recovering accurate 3d human pose in the wild using

imus and a moving camera. In Proc. in ECCV, sep 2018.
[23] Hugo Touvron et al. Training data-efficient image transformers & distillation

through attention. In Proc. of ICML, pages 10347–10357. PMLR, 2021.
[24] Catalin Ionescu et al. Human3. 6m: Large scale datasets and predictive methods

for 3d human sensing in natural environments. IEEE transactions on pattern
analysis and machine intelligence, 36(7):1325–1339, 2013.

[25] Georgios Pavlakos et al. Learning to estimate 3d human pose and shape from a
single color image. In Proc. of the CVPR, pages 459–468, 2018.

[26] Kevin Lin et al. Mesh graphormer. In Proc. of the ICCV, pages 12939–12948, 2021.

6

	Abstract
	1 Introduction
	2 Proposed VITA Algorithm
	2.1 Overall Architecture of the Proposed ViT for HMR
	2.2 Proposed Average Pooling Block

	3 Proposed VITA Accelerator Design
	3.1 Overall Architecture
	3.2 Proposed Dataflow and Mapping

	4 Experiment Results
	4.1 Experiment Setting
	4.2 Evaluation

	5 Related Work
	6 Conclusion
	References

