é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

INVALIDATE+CoMPARE: A Timer-Free
GPU Cache Attack Primitive

Zhenkai Zhang, Clemson University; Kunbei Cai, University of Central Florida;
Yanan Guo, University of Rochester; Fan Yao, University of Central Florida;
Xing Gao, University of Delaware

https://www.usenix.org/conference/usenixsecurity24/presentation/zhang-zhenkai

This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14-16, 2024 - Philadelphia, PA, USA
978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium
is sponsored by USENIX.

I
+ » e - = =
. JEEEES o -
R W E »

INVALIDATE+COMPARE: A Timer-Free GPU Cache Attack Primitive

Zhenkai Zhang
Clemson University

Fan Yao
University of Central Florida

Abstract

While extensive research has been conducted on CPU cache
side-channel attacks, the landscape of similar studies on mod-
ern GPUs remains largely uncharted. In this paper, we investi-
gate potential information leakage threats posed by the caches
in GPUs of NVIDIA’s latest Ampere and Ada Lovelace gener-
ations. We first exploit a GPU cache maintenance instruction
to reverse engineer certain key properties of the cache hierar-
chy in these GPUs, and then we introduce a novel GPU cache
side-channel attack primitive named INVALIDATE+COMPARE
that is designed to spy on the GPU cache activities of a victim
in a timer-free manner. We further showcase the use of this
primitive with two case studies. The first one is a website fin-
gerprinting attack that can accurately identify the web pages
visited by a user, while the second one uncovers keystroke
data entered via a virtual keyboard. To our knowledge, these
stand as the first demonstrations of timer-free cache side-
channel attacks on GPUs.

1 Introduction

Over the years, dedicated graphics processing units (GPUs)
have emerged as essential components in modern computer
systems. On one hand, they are utilized to handle high-quality
graphics rendering tasks, ensuring smooth frame rates with
fine texture details and rich color depths. On the other hand,
they provide the processing power required for executing a
broad spectrum of compute-intensive applications, such as
physical dynamics simulation and deep learning.

Undeniably, NVIDIA has established itself as the dominant
player in the GPU market. In recent years, its products of the
Ampere and Ada Lovelace generations (e.g., those in the RTX
30-/40-series) have been driving substantial revenue, thanks
to their industry-leading performance and the high demand
they enjoy across various sectors [13, 31, 44, 66].

However, despite the widespread adoption of these GPUs,
their potential security issues, from the hardware perspective,
have not been as thoroughly studied as those of CPUs. As an
outstanding example, concerns about information leakage via

Kunbei Cai
University of Central Florida

Yanan Guo
University of Rochester

Xing Gao
University of Delaware

CPU caches have received extensive research attention [2, 9,
10, 17, 25, 30,47, 48, 51, 56, 69, 73], but similar problems are
under-explored with respect to GPU caches. Since many tasks
running on a GPU operate on sensitive information, such an
oversight may lead to unanticipated security breaches.

Echoing the presumed implications, in this work, we aim
to undertake a study on potential information leakage through
caches in contemporary NVIDIA GPUs and demonstrate rele-
vant side-channel attacks that compromise user confidentiality.
Yet, to achieve this, several challenges specific to these GPUs
need to be addressed.

The first challenge lies in the lack of knowledge about such
GPU caches. To develop cache side-channel attacks, a level of
understanding on certain properties of the cache is necessary
(e.g., whether it is inclusive, exclusive, or non-inclusive and
how its state can be deterministically manipulated). Although
there exist a few reverse-engineering works on GPUs [20, 21,
33, 53, 71], most of them deal with obsolete models and all of
them only concentrate on the cache structures without delving
into the policies that dictate cache operations. Therefore, we
must make efforts to bridge this knowledge gap.

The second one revolves around finding a reliable method
to monitor GPU cache activities. Conventionally, CPU cache
side-channel attacks exploit the timing discrepancies between
cache hits and misses to infer cache access patterns. While the
approach is largely successful, noise in timing measurements
may degrade its effectiveness [2], which can also be an issue in
the context of GPUs. Nevertheless, a more pronounced issue
of using timers in GPUs is that unlike CPU timestamp coun-
ters, which increment in a frequency-invariant fashion [29],
their GPU equivalents are susceptible to frequency shifts. This
means that a cache hit at a high performance level may require
as many cycles as a cache miss at a low level. For instance, an
RTX 3080’s frequency dynamically varies between 210MHz
and 2100MHz, and at its peak frequency, an L2 cache hit takes
about 530 cycles, while at around 550MHz, an L2 miss takes
roughly the same amount. Certainly, the problems associated
with timing can be bypassed if a timer-free attack primitive,
similar to those for CPUs [2, 23, 74, 76], is available.

USENIX Association

33rd USENIX Security Symposium 2101

The third challenge stems from the manner in which GPUs
handle the execution of concurrently running GPU programs.
Unlike multi-core CPUs that allow multiple processes to run
simultaneously, GPUs orchestrate the concurrent execution of
programs using a time-sharing mechanism. The duration of a
GPU time slice is long enough to accommodate a number of
memory operations, and we observe that nearly all of the GPU
cache sets are accessed within each time slice in common
GPU workloads. As a result, merely deducing if a GPU cache
set has been accessed or not is insufficient for mounting GPU
cache side-channel attacks. We need an approach to extracting
more fine-grained information from the GPU cache.

Taking advantage of a GPU cache maintenance instruction
named discard, we have successfully addressed all of these
challenges and formulated a novel, timer-free GPU cache side-
channel attack primitive dubbed as INVALIDATE+COMPARE.
Using this primitive, we demonstrate two side-channel attacks
targeting the latest NVIDIA Ampere and Ada Lovelace GPUs.
The first one is a website fingerprinting attack, similar to those
described in [27, 38]. However, unlike these prior studies that
exploited software flaws (already fixed) in GPU drivers, our
attack is built on vulnerabilities of hardware cache, which is
more difficult to thwart. The second attack we showcase is to
infer specific keystrokes made by a user on a virtual keyboard.
While it has been shown that typing on such a keyboard can
be recovered via monitoring cache lines of graphics libraries
on the CPU side [69], our attack reveals that such sensitive
information can also be extracted from GPU cache. To our
knowledge, these two case studies stand as the first timer-free
cache side-channel attacks on GPUs.

The main contributions of this paper are:

* We leverage the incoherence among GPU L1 caches and
the undocumented semantics of the discard instruction
to form a new method for reverse engineering GPU cache
properties. We show that the approach allows us to unveil
certain key cache characteristics in the latest NVIDIA
GPUs for the first time.

* We introduce INVALIDATE+COMPARE, which is a new
GPU cache side-channel attack primitive and also the
first of its kind to be timer-free. To put the primitive into
action, we address challenges like how to synchronize
cache monitoring steps with GPU context switching and
how to measure fine-grained information regarding the
degree of contention within a GPU cache set.

* We use the formulated attack primitive to conduct two
case studies. In the first, we illustrate a highly accurate
website fingerprinting attack that maintains its effective-
ness over time, and in the second, we present a keystroke
extraction attack against the OS’s bundled virtual key-
board, showing its potential to steal a user’s login pass-
word.

Responsible disclosure: We have disclosed our findings to

NVIDIA, who has acknowledged our work.

2 Background

2.1 GPU Architecture

GPUs have transformed from specialized graphics rendering
devices into highly programmable accelerators capable of
executing a wide range of parallel workloads. The primary
compute units in a modern GPU are called streaming multi-
processors (SMs), each of which comprises an array of simple
cores. SMs are designed to execute groups of threads, referred
to as warps, in a single-instruction multiple-thread (SIMT)
fashion. In terms of NVIDIA GPUs, a warp consists of 32
threads. When multiple warps execute on an SM, they are
scheduled by a hardware unit in the SM. In general, there are
tens of SMs in a high-end GPU (e.g., NVIDIA RTX 3080
houses 68 SMs).

A GPU uses its on-board memory to hold data slated for
processing. Such on-board GPU memory typically comprises
several DRAM chips that are of special types tailored for high
bandwidth (e.g., GDDR6). Each DRAM chip is connected
with the GPU via a dedicated memory controller. Note that the
GPU memory operates independently from the main memory
on the CPU side and is managed in its own manner. Trans-
ferring data between the main memory and GPU memory is
facilitated by the PCle bus.

GPU memory access latency is very high (in fact much
higher than that of main memory). To help counteract such
significant latency, caches are used. A modern GPU usually
has a two-level cache hierarchy. SMs have private L1 caches,
a portion of which can be repurposed as scratchpad memory.
All SMs share an L2 that serves as the last-level cache (LLC).
In NVIDIA GPUs, the cache line size is 128B [22]. Similar to
the CPU counterpart, the LLC of a GPU is also set-associative
and physically tagged.

2.2 GPU Programming

GPUs can always be programmed using graphics rendering
APIs (e.g., OpenGL [7] and Vulkan [6]). These APIs provide
the framework for developing shaders, which are specialized
GPU programs that dictate how graphics are generated and
drawn on the screen. However, when using GPUs for broader
computational tasks, a more general-purpose programming
language is needed.

As a standard practice, NVIDIA GPUs are programmed
with CUDA for general-purpose parallel computing [41]. In
CUDA, GPU computational tasks are defined within functions
known as kernels. When a kernel gets launched on a GPU, it
is instantiated as a grid of thread blocks. Each thread block
contains a number of threads and is assigned to an SM by the
CUDA runtime for execution. The count of thread blocks and
the threads in each block need to be specified upon launch.

While CUDA provides a high-level GPU programming
paradigm, a low-level assembly-like language named Parallel

2102 33rd USENIX Security Symposium

USENIX Association

Table 1: GPU models tested in Section 3.

Grade GPU Model Generation SM Cnt. | Memory Sz. | L2 Sz."| Release
RTX 3060 Ampere 28 12GB 3MB Jan 2021
Consumer | RTX 3080 Ampere 68 10GB SMB | Sep 2020
RTX 4060 | Ada Lovelace 24 8GB 24MB | May 2023
Server A2 Ampere 10 16GB 2MB | Nov 2021
A10 Ampere 72 24GB 6MB Apr 2021

 Except for RTX 3080 whose L2 cache size is officially provided by NVIDIA [43], the data
for the other models are sourced from TechPowerUp [62-65].

Thread Execution (PTX) can also be used to program NVIDIA
GPUs [45]. PTX exposes more details about GPU internals
and offers finer control over hardware resources. The asm ()
statements can be leveraged to embed arbitrary PTX code
within a CUDA kernel function. Notice that PTX is not the
actual assembly language used by NVIDIA GPUs. Instead, it
plays the role of an intermediate representation, acting as an
abstract ISA that is compatible across multiple generations of
NVIDIA GPUs.

2.3 GPU Context

Regardless of the programming language or API being used,
an instance of a GPU program in execution is referred to as a
GPU context that is analogous to a CPU process. GPUs em-
ploy a time-sharing mechanism to concurrently run multiple
GPU contexts. Basically, inside a GPU, there is a hardware
scheduler that multiplexes the execution of GPU contexts by
allocating each context a time slice. Within its time slice, a
context can access available resources on the GPU.

Although an NVIDIA GPU does not support simultaneous
execution of multiple contexts, a feature of the CUDA runtime
named multi-process service (MPS), when enabled, can merge
several running CUDA programs into a single GPU context
for better resource utilization. By default, MPS is disabled and
users typically do not turn it on. Therefore, in the usual setup,
GPU contexts of running CUDA programs are time-sliced.
Moreover, MPS is specific to CUDA and does not combine
graphics rendering GPU contexts.

3 GPU Cache Characteristics

In this section, we explore the cache hierarchy in NVIDIA
GPUs and uncover the key properties that pave the way for the
construction of our new attack primitive. Both the exploration
and the primitive hinge on the use of a special GPU cache
maintenance instruction, which we shall present first in the
following discussion.

3.1 The discard PTX Instruction

Undoubtedly, the security community has been familiar with
the c1flush instruction in x86 CPUs and the various cache
side-channel attacks it enables [8, 10, 69, 73]. Essentially, this
unprivileged instruction can be used to flush a cache line from

all the cache levels in an x86 processor, and if the cache line
is dirty, it also ensures that the contents in the cache line are
written back to the main memory [16].

In NVIDIA Turing and earlier GPUs, no instruction similar
to c1flush is available. On the other hand, starting with the
Ampere microarchitecture, NVIDIA has introduced a new
PTX instruction named discard to facilitate removing cache
lines. The syntax' of this instruction is as follows:

discard.L2 [addr], 128;
where the addr operand specifies a GPU memory address
that needs to align on a 128-byte boundary. According to the
official documentation [45], the semantics of the discard in-
struction is to invalidate any data in the address range [addr,
addr + 128) cached in L2 without writing the data back to
GPU memory.

Although it is not specifically mentioned in [45], given the
fact that the cache line size is 128B in NVIDIA GPUs [22],
we can deduce that discard operates on a single cache line.
Notice that, similar to the CPU side, the GPU also employs
paging-based virtual memory, and the address specified by the
addr operand is a virtual one. Naturally, GPUs also require
virtual-to-physical address translation, the details of which
have been revealed in [78].

If we compare the semantics of the CPU’s c1f1lush and the
GPU’s discard instructions as described in their respective
official documentations, we can identify two main differences.
First, c1f1lush removes the target cache line from the entire
cache hierarchy, while discard is only mentioned to remove
the cache line from L2, which is the LLC in a GPU. Second,
it is important to highlight that c1f1ush writes modified data
in the removed cache line back to memory, whereas discard
does not write any data back to memory, even if the target
cache line is dirty. From this aspect, discard bears resem-
blance to the privileged invd instruction in x86.

3.2 Inclusion Policy

NVIDIA has never disclosed any information on whether the
L2 cache in its GPUs is inclusive, exclusive, or non-inclusive.
Because the load instruction 1d brings data into both L1 and
L2 caches by default [45], L2 must not be exclusive. Interest-
ingly, it is mentioned in [45] that L1 caches are not coherent.
We know that the main reason for having an inclusive LLC
is to simplify the design of cache coherence protocols, and
thus we speculate that L2 in NVIDIA GPUs is non-inclusive.
To shed light on this matter and also understand more on
the discard’s effects, we perform the following experiment
illustrated in Figure 1.

Suppose there is a data block B in GPU memory whose
initial value is 0. To begin with, we arbitrarily choose two
SMs, X and Y, to load B into L2 as well as their own L1 caches.

I'The exact syntax of this instruction is discard{.global}.level
[addr], size;.Nevertheless, .global can be omitted, Ievel can only
be L2, and s1ize can only be 128.

USENIX Association

33rd USENIX Security Symposium 2103

Xreads B X writes B
L2 T | Y reads B IL2 @ | Y writes B T {
[Mem — B:[0] | [Mem — B:[0] | IMem B.@ | IMem B:[0] | 2

Figure 1: Experiment to further understand discard and determine
if L2 is inclusive or non-inclusive. (% is used to represent an indeter-
minate value, and Section 3.3 explains why it can happen.)

Next, we let X overwrite B with the value 1 and let Y overwrite
B with the value 2. Since coherence is not maintained among
L1 caches of SMs [45], the updates made by X and Y will be
simultaneously kept in the corresponding L1 caches without
invalidating each other. We then let X execute the discard
instruction on B to remove it from L2. After that, we have
X and Y read B again to examine which value each of them
retrieves, respectively.

We conduct this experiment on multiple GPUs, which are
listed in Table 1, including three very popular consumer-grade
ones (e.g., RTX 3060) and two server-grade ones (e.g., A10).
‘We observe a consistent result on all the GPUs, which is: X
retrieves O and Y retrieves 2. From this result, we can draw the
following conclusions. @) L2 in these GPUs is non-inclusive;
otherwise, the removal of B from L2 should have enforced
the invalidation of the corresponding cache line in Y’s L1. @
discard does not remove the target cache line from the entire
cache hierarchy. Instead, it removes the cache line from L2
and also from the L1 cache of the SM issuing the instruction,
which is not specified in the documented semantics. € When
an L1 cache miss occurs, the needed memory block is fetched
from lower levels of the GPU memory hierarchy rather than
the sibling L1 caches; if this were not the case, X should have
obtained 2.

Notice that there is no mechanism in CUDA to synchronize
concurrent execution on different SMs. To ensure that one
SM will not perform an operation (e.g., X discards B) until
the other SM has finished its required predecessor (e.g., Y
modifies B), we insert a sufficiently large delay before the
operation to enforce the intended ordering.

3.3 Write Policy

In the aforementioned experiment, it is clear that updates do
not write through the whole cache hierarchy to the GPU mem-
ory (otherwise, X would not have retrieved 0). Nevertheless,
we do not know how writes are handled between L1 and L2.
To gain insight into this particular write policy, we conduct
the procedure shown in Figure 2.

Which value
Xreads B |L2 0] | X writes B |L2 | YreadsB{
I I
[Mem B:[0]] [Mem — B:[0]] [Mem — B:[0] | 1

Figure 2: Experiment to check if L1 is write-back or write-through.

Similar to the study performed above, we utilize two SMs
and a memory block with an initial value of 0. Instead of
having both SMs read and modify B, here we only use X to do
so. After X’s update, we let Y read B to check its value. (An
auxiliary experiment in Appendix A also confirms that B has
never been evicted from X’s L1 cache.) We find that Y always
retrieves 1 regardless of the GPU and selected SMs.

This behavior is not surprising if considered from the
CPU’s perspective. However, as discussed earlier, a GPU’s L1
caches are incoherent, and its L1 cache misses are serviced
by L2 or GPU memory rather than by any sibling L1 caches.
Therefore, such behavior manifests the fact that when B is
written in L1, it is also updated in L2. In other words, the
write policy employed by GPU L1 caches is write-through.
(The whole write-through process should be atomic.) Surely,
due to this design, if multiple SMs write to the same address
concurrently, the final value in L2 depends on the order of
these writes.

From our previous reasoning, it is not hard to deduce that
L2 is a write-back cache. As a simple verification, after X
writes 1 to B, we let Y sequentially access a very large array,
and then have X use discard to invalidate B. When X reloads
B from GPU memory, it obtains 1. If dirty cache lines in L2
were not written back to memory, X should have retrieved 0.

3.4 Write Allocation Policy

It is said that write-back caches often use the write allocate
scheme (namely, when a write operation misses in the cache,
the corresponding block is fetched and put in the cache for
being updated), while write-through caches often use the no-
write allocate scheme (namely, when a write operation misses
in the cache, data is directly written to the lower level with-
out being allocated space in the cache) [50]. Following the
steps shown in Figure 3 and Figure 4, we can easily examine
the write allocation policy used in GPU L1 and L2 caches,
respectively.

0 ® 0 ©
m Which valuz
—_—

I VreadsB |L2 @ I XwntesB |L2 . I Y discards B |L2

I XreadsB{
IMem B:[0] | [Mem — B:[0]] [Mem i B:[0] | [Mem ! B:[0] | 1

Figure 3: Experiment to examine the write allocation policy of L1.

As illustrated in Figure 3, Y loads B first, and then X writes
1 to B. In this case, X experiences an L1 cache miss when
writing B. Subsequently, Y discards B, after which, X reads
B to check its value. We find that the value read out by X is
always 1. This observation indicates that L1, although write-
through, employs the write allocate scheme; because if the
no-write allocate one were used, X should have read B from
GPU memory, which still has the initial value 0.

Similarly, as illustrated in Figure 4, we can engineer a sit-
uation where X will experience an L2 cache miss when it

2104 33rd USENIX Security Symposium

USENIX Association

0 © 0 © 0 © OO

2o] Y discards B [2] X writes B 27] Xdiscards B L2
—_— —_— f —

] XreadsB{
T T 1 T
[Mem — B:[0] | [Mem — B:[0]] [Mem — B:[7]] [Mem — B:[7]] 1

Figure 4: Experiment to examine the write allocation policy of L2.

modifies B. Despite a hit in L1, L2 always receives X’s write
operation due to the write-through property of L1. Thus, if L2
employs the no-write allocate policy, B in GPU memory will
be updated; conversely, if L2 uses the write allocate scheme,
B in memory will preserve its original value. To check if the
value of B in GPU memory is updated, X can discard B first
and then read it. We discover that L2 caches in all the tested
GPUs use the write allocate scheme.

Exploiting timing differences between L1/L2 cache hits
and misses, we can reach the same conclusions. Even though
timing can be used for examining both inclusion and write
allocation policies, we need to emphasize that it may not be
easily used to infer the write policy.

3.5 L1 Cache Auto-Flushing

As outlined in Section 2.3, by default, GPU contexts are sched-
uled to take turns executing on the GPU. An interesting be-
havior we have noticed is that context switching automatically
flushes all the L1 caches. The experiment shown in Figure 5
demonstrates this auto-flushing behavior.

Which value C__ Which value

G 0 ¢ g - % i [T
2 context back Y reads B{ Y discards B Y reads B{

[Mem — B:[0]] [Mem — B:[7]] 1 :[2 1

Figure 5: Experiment to demonstrate L1 cache auto-flushing.

At the outset, we prepare an incoherent cache hierarchy
state in which B holds different values in the L1 caches of X
and Y. This can be easily achieved by having Y load B first and
then X write 1 to B. It is apparent that if B persistently resides
in Y’s L1 cache, Y will never see the value of B as 1. To induce
GPU context switches, we create and execute a dummy CUDA
program that has a PTX branch instruction infinitely looping
on itself. Accordingly, the chance that L1 caches are evicted
by other memory accesses is minimized. After the context is
switched back, we find that Y, regardless of which SM it is,
always sees the value of B as 1. This observation indicates
that GPU context switching triggers L1 cache flushing.

To verify that GPU context switching does not flush L2 and
write dirty cache lines back to memory, we subsequently let
Y discard B, followed by a load operation on B. In this case,
we find that Y retrieves 0, i.e., the original value of B. This
implies the fact that L2 is not flushed; otherwise, Y should
have consistently seen the same value no matter if discarding
B was performed or not.

3.6 Associativity and Replacement

Due to its auto-flushing behavior, L1 will not pose challenges
to cache side-channel attacks on GPUs, even though the LLC
is non-inclusive. Consequently, we only focus on the L2 cache
(i.e., the LLC) here for the sake of brevity.

Given a GPU, we begin by determining the associativity of
its L2 cache. For this purpose, we derive a list of addresses
{Ap,A1, -} that are mapped to an identical L2 cache set (see
Section 4.2 for the detailed procedure), and access them one-
by-one to find how many of them the cache set can hold. For
each GPU tested, we observe a peculiar behavior. € If we
access the addresses using only st, at most 7 of them can
be kept in a cache set. @ If we access the addresses using
only 1d, up to 16 of them can be finally kept in a set. @ If we
access the addresses using both 1d and st, a cache set can still
hold 16 blocks, but under certain access patterns, up to 8 can
be brought in by st. Thus, we deduce that the associativity of
L2 is 16 in NVIDIA GPUs, but a cache set’s 16 ways are not
used proportionately by loads and stores. We conjecture that
NVIDIA aims to maintain a dirty cache line ratio <50% in
its L2 design.

We further examine the dynamics of replacement within L2.
When only st is used, we find that the replacement among
the 7 dirty cache lines simply adheres to the LRU policy. In-
triguingly, when only 1d is used, replacements start appearing
regularly as a cache set is being filled over 9 ways, but after all
the 16 ways are occupied, the replacement behavior conforms
to LRU (refer to Appendix B for more details).

I I

AR AT A

[1
|
[
T'T
[T

0 2 2 2 0 7 A
AIAAAAAL DL L LT Pdh]s:
AR AT A A] 58 e R LY I

Figure 6: Priming an L2 cache set (writing A, - - - ,Ag followed by
reading A7,--- ,A;s) and then accessing other addresses.

Our attack primitive needs to prime cache sets while mak-
ing certain cache lines in them dirty. Apparently, due to the
limit on the number of dirty cache lines in a set, we cannot use
st alone to achieve priming. In our case, we look to verify
whether 7 stores followed by 9 loads, or 9 loads followed
by 7 stores, can effectively populate a cache set, and we are
also interested in the replacement behavior in response to new
accesses after a cache set is populated.

Although filling an empty cache set with only 1d requires
more than 16 accesses (see Appendix B), we observe that a
combination of 7 stores and 9 loads, adding up to 16 accesses,
can effectively occupy an unused set. (The state Sy in Figure 6
illustrates the case where 7 stores followed by 9 loads.) This
implies that L2 may not manage dirty and clean cache lines
in the same way.

When accessing new addresses after a cache set is filled

USENIX Association

33rd USENIX Security Symposium 2105

with 7 stores and 9 loads, we find an interesting phenomenon
that the eviction patterns do not align with any known replace-
ment policy, which is depicted in Figure 6. We can see that
accessing A forces out not only the least recently used Ag
but also A7. While A7 has been accessed more recently than
Ay,---,Ag, itis the least recently read one via 1d. Our hypoth-
esis is that when the least recently used cache line is dirty and
gets evicted, the least recently read one will also be evicted.
The state transition from S5 to S4 in Figure 6 lends support
to this hypothesis. Note that the opposite is not true. If the
least recently used cache line is clean and becomes evicted,
the least recently written one will not be evicted.

Despite the L2’s unusual replacement behavior, we find
that after cache lines in a primed cache set are evicted, the
state can be reestablished by performing 7 stores and 9 loads
again. This determinism suffices for the scope of this study,
and the detailed analysis of its replacement policy is reserved
for future research. Following standard nomenclature, the
addresses corresponding to the 7 stores and 9 loads are said
to form an eviction set, and these addresses are referred to as
congruent.

4 INVALIDATE+COMPARE

Based on the learned properties of the GPU cache hierarchy,
we formulate the INVALIDATE+COMPARE attack primitive
for spying on a victim’s GPU cache activity in a timer-free
manner. Given an L2 cache set along with an eviction set
{Ao," -+ ,As,A7, -+ ,Ajs}, the initial primitive consists of the
following five steps:

Step 1: Write new values to addresses Ay, - - - ,Ag.
Step 2: Read the values at addresses A7, --- ,Ajs.
Step 3: Wait for the context to be switched away and back.
Step 4: Execute the discard instruction on Ay.
Step 5: Read the current value at Ao for comparison.
* Ifitis the original value, the victim did not access
the cache set during its running period.
« Ifitis the newly written value, the victim accessed
the cache set during its running period.

The rationale behind the primitive is that if the victim
fetched any data into the cache set, the dirty cache line corre-
sponding to Ag would have been evicted before we attempted
to invalidate it and hence the value within it would have been
committed to the memory; otherwise, no dirty cache lines
were evicted and when the one associated with Ay became
invalidated, the value within it would be lost in accordance
with the discard’s semantics. Therefore, the value at A after
performing the invalidation can accurately reveal if the cache
set is accessed by the victim. (The reason for the initial two
steps has been discussed above in Section 3.6.)

In this primitive, after Step 1 and 2 prepare the cache set

state, in Step 3, the attacker shall wait for the victim to carry
out some GPU computation. In other words, the attacker needs
to wait for the victim’s GPU context to get scheduled and later
the attacker’s GPU context will regain control again. Hence,
this step in essence is the attacker awaiting her own GPU
context to be switched out and then back in.

An SM is capable of simultaneously spying on multiple
cache sets, each of which is monitored by a separate thread.
For NVIDIA GPUs, a warp consists of 32 threads. When there
are multiple warps executing on an SM, they are scheduled
by a hardware scheduler unit. Considering the availability of
tens of SMs in a GPU, we are able to monitor hundreds of
cache sets in parallel.

It is important to highlight that the primitive in its current
form is intended only for illustrative purposes to aid in com-
prehension, and may not have practical utility in real-world
scenarios. This is because we notice that all (or most of) the
L2 sets appear to be accessed after a GPU context switch. To
make the INVALIDATE+COMPARE primitive useful, we need
to refine it, which will be described later in this section.

4.1 GPU Context Switch Detection

An important question we have yet to address pertains to the
realization of Step 3. More precisely, how can we find out that
the execution of the GPU context has been preempted and
then resumed? Here we propose two approaches, and both of
them are effective for Ampere GPUs, but only the second one
is suitable for GPUs in the Ada Lovelace generation.

In the first approach, we slightly relax the timer-free claim
by allowing the use of $clock64 that is the GPU’s timestamp
counter. (The measurement phase consistently remains timer-
free.) Our approach, as depicted in Figure 7a, keeps cycling
through a tight loop until an iteration takes more time than
a specified threshold T. This is indicative of an event where
the GPU context has been switched away and resumed in that
iteration, since the looping time is very stable in the absence
of context switching. Furthermore, delta can even help us
capture useful temporal information regarding competition
under the GPU scheduling.

| prev = 0; Increment M continuously

start = clock64(); —A —A—
3 do { SM Y _—,)H—_ .
4 delta = clock64() — start; P H
-) 1 Victim’'s GPU:
(xfb(deita - prev > T) W”‘e‘f\w L i context mnSESIep 4,5
6 reak; H H
7 prev = delta; SM X ——r))—l- r. .
$)} while (1); — Y New round

Step 1,2 Loopif M is 0 See M >0

(a) First approach. (b) Second approach.

Figure 7: How to detect if the context is switched away and back.

While this method is effective on Ampere GPUs, it does
not function as intended on Ada Lovelace GPUs. We discover
that, unlike the counter in Ampere GPUs, $clock64 in Ada
Lovelace ones (e.g., RTX 4060) does not represent an actual

2106 33rd USENIX Security Symposium

USENIX Association

clock; instead, it acts as a logical clock specific to each GPU
context. Consequently, during a context switch, $clock64 of
one context does not increase to account for the execution
time of other GPU contexts.

The second approach, which does not rely on the times-
tamp counter, is built on the L1 auto-flushing behavior and
some other special properties of the GPU cache hierarchy. In
this approach, aside from the SMs tasked with monitoring
cache sets (dubbed as spy SMs), an additional SM is des-
ignated to continuously increment a flag variable. This flag
variable should be mapped to a non-monitored set to prevent
interference with the monitoring process. After a spy SM has
finished the first two steps, it writes O to the flag and then
repeatedly checks it until the value is no longer zero. Given
the L1’s incoherent and write allocate nature, copies of the
flag variable with two different values reside in the L1 caches
of the spy SMs and the SM dedicated to incrementing the
flag variable. Because of the L1’s write-through nature, each
increment to the flag results in an immediate update in L2. It
is not hard to see that the spy SMs cannot observe the updated
flag in L2 until the copies residing in their own L1 caches are
flushed due to context switching.

The second approach is visualized in Figure 7b, where X is a
spy SM and Y is the SM responsible for incrementing the flag.
Note that the effectiveness of the approach is not influenced by
whether or not the flag is evicted from L2 during the execution
of the victim’s GPU context. Similar to the delta value in
the first approach, the flag value here can also be used for
capturing temporal information. We shall underscore that the
second approach works well on GPUs in both Ampere and
Ada Lovelace generations.

4.2 Eviction Set Construction

The problem of finding congruent addresses to form evic-
tion sets for CPU caches has been studied extensively [2, 30,
59, 68]. In terms of our study, we adapt the commonly used
method in [30] by replacing its timing-based eviction check-
ing with the function shown in Algorithm 1. The principle of
this timer-free checking is essentially the same as that of the
primitive, namely, the written value will not survive unless
the cache line has been evicted before the invalidation.
Notice that, due to the limitation on the number of dirty
cache lines in an L2 cache set (as discussed in Section 3.6),
we need to run the method multiple times with respect to
different GPU memory chunks to accumulate sufficient con-
gruent addresses. While this is just a minor issue, a trickier
problem we encounter is that a large amount of online noise
(e.g., introduced by time-sharing) may cause the finding pro-
cess to fail. Certainly, if it were possible to derive eviction
sets offline only once and subsequently use them directly for
online attacks, these inconveniences could be eliminated. We
confirm that such a “one and done” approach is feasible.
First of all, unlike CPUs where the memory configuration

Algorithm 1: Timer-free eviction checking function.

inputs :An address a and a set of addresses S.
output :If a can be evicted by S, true; otherwise, false.
function check_eviction(a,S):
write Oxdeadbeef to a;
for each address e in S do
L write an arbitrary value (e.g., 0) to e;

execute the discard instruction on a;
read the current value v at a;
if v is equal to Oxdeadbeef then
| return true;
else
L return false;

can be altered, the memory setup in a GPU is not only static
but also identical for all instances of the same model. In other
words, any given physical address will be mapped into the
same L2 cache set on two GPUs of the same model (e.g., an
ASUS RTX 4060 and a PNY RTX 4060). Second, we observe
that NVIDIA drivers follow a pattern of allocating physically
contiguous GPU page frames and maintain a consistent start-
ing address for memory allocation; namely, there is minimal
randomization involved in this allocation process. Therefore,
we can construct eviction sets against a GPU offline and use
them online.

We should emphasize that while the driver begins memory
allocation at low physical addresses, we construct eviction
sets using memory chunks at a relatively high address (e.g.,
0x20000000 in our case studies). This strategy reduces the
likelihood of other GPU contexts occupying our required page
frames. At the onset of an online attack, by trying different
sizes of padding prior to memory allocation and testing if the
prepared eviction sets work, we can identify the right location.
It is worth mentioning that each padding size is a multiple of
the GPU page size, which is 2MB. This large stride allows
the search process to be completed swiftly.

We have also tried to derive the mapping function from the
constructed eviction sets for each GPU we experimented with.
Unfortunately, we have not been successful in this endeavor.
We observe that the number of L2 cache sets in all the tested
GPUs is not a power of 2, and they cannot be addressed using a
group of XOR functions. We leave the full reverse engineering
of the mapping functions for our future work.

4.3 Primitive Revision

We have mentioned that the attack primitive requires revision
because it lacks practical effectiveness in its present form.
Even though it is theoretically sound, we identify two primary
issues that prevent the primitive from yielding useful infor-
mation. The first issue is the non-negligible spatial overhead
introduced by GPU context switching. For example, on an
RTX 3060, we observe that a number of L2 cache sets appear
to have been accessed upon switching back, in spite of the

USENIX Association

33rd USENIX Security Symposium 2107

fact that the other context belongs to a minimal GPU program
running merely a dummy infinite loop. Second, contrary to
some prior cache side-channel attacks on CPUs, where the
attacker can game the scheduler of the OS or hypervisor [10,
77], we have not found a viable method for exerting the same
influence over the GPU scheduler. As shown in Figure &, each
time slice allocated to a GPU context is not short, making it
very likely that the victim accesses most of, if not all, the L2
cache sets during this period. Hence, providing information
solely on whether a cache set is accessed or not barely offers
any useful insight into the cache activities of the victim.

To address this problem, we propose a revision to the last
two steps of the primitive. Instead of just checking whether
a cache set has been accessed, our revised primitive aims to
measure the degree of contention in a cache set. Note that one
key advantage of our timer-free primitive over the traditional
PRIME+PROBE is its ability to easily pinpoint which of the
first few cache lines in a set have been evicted. Capitalizing
on this feature, we modify the last two steps of the original
method to reformulate the primitive as follows:

Step 4: Execute the discard instruction on Ay, - - - ,Asg.
Step 5: Read the current value at A, - - - ,Ag for comparison.

e If Ag is not evicted (i.e., the old value), it is 0.
e If Ay is evicted and A; is not, itis 1.

e If A5 is evicted and Ag is not, it is 6.
e If Ag is evicted, it is 7.

Essentially, rather than only carrying out the invalidation
and comparison operations on Ay, we perform the invalidation
operation across all seven addresses, Ay, - - - ,Ag, and identify
the first one that is not evicted through comparison. We then
use the position of the found address in the range to encode
the intensity of contention in the corresponding cache set. For
instance, if Ag is not evicted, the intensity is encoded as 0
denoting the lowest, and if every one is evicted, the intensity
is encoded as 7 denoting the highest.

Note that for heavy workloads, the contention intensity may
always peak at its maximum of 7, which certainly does not
convey much information. To enable capturing higher levels
of contention in such cases, we can swap the order of Step 1
and Step 2, namely, we first read from A7,--- ,A5 and then
write to Ag, - - - ,Ag. In this variant, intensity O will be like an
aggregate of all the original values from O to 7, while intensity
1 can be treated as an equivalent to a hypothetical previous
intensity of 8, and so forth.

4.4 Execution Time v.s. Allocated Time Slice

Considering GPU context scheduling, it is crucial to examine
whether the execution of the primitive can potentially exceed
the allocated time slice before its completion. (If so, the effec-
tiveness of attacks may be affected.) To this end, we compare

the maximum duration needed to perform the primitive with
the minimum time slice allocated to a GPU context.

As illustrated in Figure 7b, when the attacker’s context is
switched back, it first executes Step 4 and 5, followed by Step
1 through 3. Since Step 3 is just waiting to be scheduled away,
the pertinent execution time is the cumulative time spent on
Step 4, 5, 1, and 2. The worst-case scenario for this time
occurs when all addresses of the eviction set are absent from
the L2 cache, particularly in the revised primitive where all 7
stores need to be invalidated. Figure 8 shows the distributions
of 10,000 execution times for the primitive on an RTX 3080.
These times are measured in the worst-case scenario when
monitoring 32, 256, and 2048 cache sets with 1, 8, and 64
SMs (i.e., each SM hosts one warp), respectively. We can find
that all the times are less than 12,000 clock cycles, which is
about 6us. Since the steps of the attack primitive are executed
immediately upon being rescheduled, as long as the allocated
time slice exceeds 6us, there is no concern about the primitive
failing to complete.

| WMH"W I]

10500 11000 11500

10°
N 32 sets

N 256 sets
2048 sets

Count

°~

1

Cycles

Figure 8: Distributions of primitive execution times on an RTX 3080
GPU. The y-axis uses a logarithmic scale.

Regarding the GPU context scheduler, we have not found
any documentation providing information about its time slice
length. Given the inevitable presence of scheduling overhead,
we surmise that the time slice should not be less than 100us.
For an empirical validation, we run different GPU workloads
and measure the allocated time slices in an approximate way
(outlined in Appendix C). The analysis of the measured time
slices reveals that only around 0.04% of them fall below 1ms,
and among these, the shortest length observed is about 172us.
Therefore, we believe that the execution of the primitive can
always complete successfully in each round.

5 Case Studies

We present two case studies to demonstrate the effectiveness
of our INVALIDATE+COMPARE attack primitive. (Note that
the reference to the attack primitive here corresponds to the
revised version described in Section 4.3.) While the primitive
is applicable to both consumer- and server-grade GPUs, the
targets in these case studies are desktop applications, indicat-
ing that server-grade GPUs are not relevant to our scenarios.
Accordingly, we perform the case studies using the consumer-
grade GPUs listed in Table 1, namely the GeForce RTX 3060,
3080, and 4060.

2108 33rd USENIX Security Symposium

USENIX Association

(d) Google sample 2.

(e) Facebook sample 2.

(f) Bing sample 2.

Figure 9: Memorygrams corresponding to three commonly visited websites (the x-axis represents 512 cache sets of the RTX 4060 GPU, while

the y-axis corresponds to time that progresses from top to bottom).

5.1 Threat Model

An attacker aims to extract certain sensitive information from
a victim through their routine use of a personal computer. The
victim’s computer is equipped with an up-to-date NVIDIA
GPU (that is in the Ampere or Ada Lovelace generation),
where the latest driver and CUDA, with all disclosed vulnera-
bilities fixed, have been installed.” No special settings for the
driver or CUDA are required (e.g., MPS may be turned on/off
and the performance mode may be set as auto/fixed).

Similar to many other works [11, 19, 27, 38, 79], we assume
that the attacker can run a piece of native code on the victim’s
computer with user-level privileges. Under this assumption,
it is evident that the attacker has no problem retrieving any
world-readable version information of software (e.g., the OS
or web browser). While this native code setting may seem less
consequential, we emphasize that its purpose is for showcas-
ing the application of our primitive. A broader attack scenario
will be discussed in Section 5.5.

We focus on two types of sensitive information here, which
are website visits and virtual keystrokes. In the case study on
stealing information about website visits, commonly referred
to as website fingerprinting, we assume that the victim uses a
modern web browser with default settings to regularly visit
popular websites. The attacker can use the same browser to
profile many possible ones to build a predictive model.

In the case study on retrieving keystrokes, we assume that
the victim inputs data by tapping the visual keys of a virtual
keyboard via a touchscreen or stylus. The virtual keyboard
used by the victim is the default one of the corresponding OS.
Once again, the attacker is assumed to be able to use the same
virtual keyboard to build a predictive model.

5.2 Eviction Set Preparation

As a preparation step, we construct the eviction sets for the
L2 cache of each GPU model offline. (See Section 4.2 for the
reason of this process.) For each GPU model, we use a chunk

2 At the time of this writing, the latest GPU driver version is 535.113.01
and the latest CUDA version is 12.2.

of GPU memory, twice the size of the L2 cache, starting at
the physical address 0x20000000 to identify the eviction sets.
To demonstrate that the manufacturer has no bearing on this
process, we tested two RTX 3080 GPUs from different brands
(Founders Edition and Gigabyte) and two RTX 4060 GPUs,
also from different vendors (MSI and PNY). Our results affirm
that, given the same GPU model, the eviction sets remain
consistent across vendors.

Note that, in terms of RTX 3060, we have identified 1152
distinct eviction sets for its L2 cache. This equates to 2.25MB
(i.e., 1152 x 16 x 128B = 2.25MB), not the size of 3MB as
reported by TechPowerUp [64]. In the absence of NVIDIA’s
official documentation, it is unclear which size is the correct
one. Nevertheless, this discrepancy does not impact the case
studies we conduct. With respect to other models, the L2 sizes
match the reported ones (e.g., we find 2560 eviction sets for
RTX 3080’s L2, which is exactly SMB).

5.3 Website Fingerprinting

As our first case study, we demonstrate how to identify the
web pages browsed by a user, essentially mounting a website
fingerprinting attack. Information regarding website visits is
typically viewed as significant to privacy, given its potential to
reveal a person’s sensitive aspects (e.g., political affiliations,
health conditions, and special hobbies). Several prior studies
have exploited vulnerabilities in NVIDIA drivers to achieve
this objective [27, 38], but as the corresponding software flaws
have been addressed, their approaches are no longer effective.

5.3.1 Investigation

Over time, a variety of website fingerprinting techniques have
been proposed, like those in [1, 12, 14, 19, 47, 49, 52, 56, 67].
Among the existing techniques, several exploit information
leakage over cache hierarchies. Ours bears a resemblance to
these works (e.g., that of Oren et al. [47]), yet with differences.
While their methods rely on a (high-resolution) timer to use
primitives such as PRIME+PROBE to capture the CPU cache

USENIX Association

33rd USENIX Security Symposium 2109

behavior, we use our timer-free attack primitive to measure
GPU cache contentions.

The potential to leverage the monitored GPU cache behav-
ior for website fingerprinting arises from the fact that modern
web browsers, like Chrome and Firefox, enlist the GPU’s as-
sistance for rendering web pages. In effect, when the GPU
helps render a web page, the majority of its computational
tasks are contingent upon the contents and design of that web
page. For example, the rasterization process that converts web
page elements (e.g., text, images, and vector graphics) into
pixels happens entirely on the GPU, and the compositing pro-
cess that assembles the separately rasterized layers of a web
page into the final image for display is also performed by the
GPU. Their workloads depend significantly on the contents
of the web page being rendered and how it is designed.

Our website fingerprinting technique leverages contentions
in GPU L2 cache sets. We find that during the rendering of
a web page, nearly every cache set will be accessed by the
browser’s GPU context within each of its allocated time slices,
but the number of used cache lines varies among different
sets. The INVALIDATE+COMPARE primitive empowers us to
capture this behavior since it measures the contention intensity
within the monitored cache sets. Note that, as the rendering
process can extensively occupy the L2 cache space, we choose
to use the variant with reading 9 addresses first followed by
writing 7 addresses.

Figure 9 demonstrates the traces of contention intensity in
512 cache sets of the RTX 4060 GPU when three popular
websites are being browsed in Chrome. A trace shown in Fig-
ure 9 contains 128 INVALIDATE+COMPARE measurements.
(Each measurement is a vector of 512 elements whose value
range is from O to 7.) To follow the established parlance [47,
56], we also refer to these traces as memorygrams. It is ap-
parent that such memorygrams can provide certain insights
into the contention behavior of GPU cache during the web
page rendering process. More importantly, it is not difficult to
observe that such memorygrams can be utilized to effectively
distinguish between these three websites.

5.3.2 Evaluation

We evaluate our technique against a set of 50 websites, which
are detailed in Appendix D. These websites are popular in the
English-speaking world and chosen according to Similarweb
rankings. As the main purpose of this case study is to illustrate
the practical use of our attack primitive, we believe that a
closed-world setting will suffice at this point. (The major
challenge in open-world settings is how to achieve reliable
open set recognition, which falls outside the scope of this
paper.) In addition, due to Chrome’s dominant market share,
we focus our evaluation solely on this browser. The OS used
in our evaluation is Ubuntu 20.04.

For each website, we gather 100 memorygrams similar to
the ones depicted in Figure 9. Regardless of the GPU model,

we choose to let one SM monitor 64 L2 cache sets (i.e., two
warps running on an SM). Due to the relatively small L2 sizes
in RTX 3060 and 3080, we can monitor all of their cache sets
using 18 and 40 SMs, respectively. However, there are 12,288
cache sets in an RTX 4060 GPU but only 24 SMs, and thus
we just monitor 1472 of them using 23 SMs with the last SM
used for context switching detection (see Section 4.1).

Each memorygram consists of the contention intensity mea-
surements in 5 seconds. As we have 50 websites, our data set
has 5,000 memorygrams in total. For the task of classifying
memorygrams into respective websites, we use the standard
DenseNet-121 model. To assess the performance of our web-
site fingerprinting, we conduct a 5-fold cross-validation on our
collected data set. For each fold, we determine its accuracy,
precision, and recall. As all websites are treated equally in
our evaluation, we employ macro-averaging when calculating
precision and recall (see Appendix D).

Table 2: Results of the 5-fold cross-validation.

Accuracy Precision Recall
Max. Min. Avg. Max. Min. Avg. Max. Min. Avg.
RTX 3060 | 98.9% | 98.1% | 98.4% | 98.9% | 98.1% | 98.4% | 99.0% | 98.2% | 98.5%
RTX 3080 | 99.3% | 98.5% | 98.9% | 99.3% | 98.5% | 98.9% | 99.4% | 98.6% | 98.9%
RTX 4060 | 99.5% | 98.5% | 99.0% | 99.5% | 98.5% | 99.0% | 99.5% | 98.6% | 99.0%

The results of the 5-fold cross-validation are presented in
Table 2. From the results, we can observe that the accuracy in
each fold on any GPU is >98% and the average accuracy over
the 5 folds is >98% as well, which highlights the effectiveness
of our website fingerprinting technique. Meanwhile, it is noted
that both the precision and recall in each fold are also >98%,
which indicates that when a memorygram is classified as
belonging to a website, there is a >98% chance it is correct
and when a memorygram originates from a website, there is
a >98% chance it will be accurately recognized as such.

To substantiate that the underlying platforms will not affect
the results as long as the same GPU model is used, we evaluate
the fingerprinting performance using two separate computer
machines, M| and M,, whose configurations are specified in
Table 3. Both of them are equipped with an RTX 3080 GPU.
We highlight that the RTX 3080 GPU cards are of different
brands (Gigabyte and Founders Edition).

Table 3: Computers equipped with different RTX 3080 cards.

Machine | GPU Brand CPU Motherboard Main Mem.

M, Gigabyte AMD Ryzen 5 5500 Asus Prime B450M-A 1T 16GB
M, Founders Ed. | Intel Core i3-10100 | ASRock H570 Steel Legend 32GB

On the machine M;, 100 memorygrams per website are
collected, and a DenseNet-121 model is trained using these
memorygrams. On the machine M,, 20 memorygrams per
website are collected, and we apply the trained model to clas-
sify such data. Figure 16 in Appendix E shows the resulting
confusion matrix. In summary, the average accuracy is 97.7%,
precision is 97.7%, and recall is 97.8%, when tested with
1,000 samples from M,. It is evident that the results compara-
tively align with those of the 5-fold cross-validation.

2110 33rd USENIX Security Symposium

USENIX Association

In reality, most websites update their page content very fre-
quently, often on a daily basis or even on an hourly basis. An
interesting scenario to investigate is whether the model, once
trained, can maintain its effectiveness in fingerprinting web-
sites for a longer term. To assess this, we train a DenseNet-121
model with the initial 5,000 memorygrams of our RTX 3080.
Subsequently, for each website, we gather an additional 10
memorygrams on the 3rd, 5th, and 7th days after the original
data collection for testing. Figure 10 presents the results.

QSo\.\‘

901 *—n
8o{ —®— Acc.
754 —e— Top-3

Accuracy (%)
@
&

3 7

5
Days Passed

Figure 10: Results of effectiveness testing over time.

As anticipated, there is some degradation in performance,
but it still maintains a substantial level of effectiveness. Even
after one week, our accuracy can still reach 82.40%. Aside
from trying to exactly fingerprint the websites, we evaluate
its Top-3 accuracy as well, which remains high and relatively
stable over time (around 93%). It is intriguing to see that for
certain websites tending to update their contents frequently,
such as YouTube and BBC, our model is still able to accurately
identify them. Irrespective of frequent content changes on
these websites, their overall page layout or structure does
not alter as much. For example, the number and positions of
pictures and/or videos are stable but only the materials shown
by them are changed. Our conjecture is that this structural
consistency is the main contributing factor to the model’s
fingerprinting effectiveness over time, as it can lead to similar
web page rendering workload and patterns.

5.4 Virtual Keystroke Extraction

In the second case study, we aim to recover more fine-grained
and sensitive information beyond merely website visit data.
To this end, we focus on the keystrokes made by a user on a
virtual keyboard (also known as an on-screen keyboard) and
show that INVALIDATE+COMPARE enables us to steal them.

Note that using a virtual keyboard is not unusual in practice.
For example, it is common and crucial among people with
special needs (e.g., those with disabilities), and it is treated as
a countermeasure against keyloggers (even though its effec-
tiveness is debatable [40]). Moreover, with the proliferation of
touchscreen-based laptops and monitors, virtual keyboards are
becoming increasingly popular for day-to-day tasks. Major
consumer-facing OSes all provide default virtual keyboards
as an accessibility feature.

5.4.1 Investigation

In a GUI-based modern OS, its windowing system (e.g., X11
or Wayland in Linux) provides the protocol and mechanics for

graphics rendering and input handling. Built on top of this, the
desktop environment (e.g., GNOME or KDE) offers the GUI
interface. (Roughly speaking, the desktop environment is an
application running under a windowing system.) Usually, the
default virtual keyboard bundled with the OS is an integrated
feature of the desktop environment [5].

Windowing systems are often designed with considerations
for efficient graphics rendering, and they generally attempt
to avoid re-rendering the entire screen when only a small
portion of the screen changes. Take X11 with the DAMAGE
extension as an example.’ (This extension is incorporated in
nearly all display server implementations of X11, such as the
widely used Xorg.) When a graphical element in an appli-
cation running under this setup is modified, the DAMAGE
extension identifies the affected region and marks it as “dirty”.
Compositing window managers compatible with X11 system
will then focus on re-compositing only the “dirty” region of
the surfaces to enhance efficiency.

With respect to a virtual keyboard, when a key is activated,
it normally exhibits certain local visual effects (e.g., shading
the surroundings of the key). Consequently, the windowing
system should focus on re-rendering only that particular area.
Note that windowing systems typically leverage the power of
GPUs for graphic rendering, and they also maintain various
buffers in GPU memory, one of which in fact corresponds to
the desktop environment. When a virtual keystroke is made, it
is conceivable that only the parts of this buffer associated with
the “dirty” regions (i.e., those affected by the keystroke) are
accessed. This implies that distinct keys may access different
GPU memory addresses. Therefore, we hypothesize that it is
possible to produce distinguishable traces in the GPU cache
when pressing different keys.

(c) Key ‘a’ sample 2. (d) Key ‘b’ sample 2.
Figure 11: Reshaped memorygrams corresponding to pressing keys
‘a’ and ‘b’ on the GNOME virtual keyboard under the default X11
windowing system when an RTX 3080 GPU is used.

As evidence supporting our hypothesis, Figure 11 depicts
two pairs of memorygrams generated on an RTX 3080 when
pressing the letters ‘a’ and ‘b’ under the X11 windowing
system. Note that the original memorygrams have a dimension
of 5 x 2560, because we monitor 2560 L2 cache sets and the
keystroke visual effect rendering induces about 5 GPU context
switches. For clarity in visualization, we reshape them into

3The newer Wayland windowing system has the concept of “dirty” regions
handling from the ground up.

USENIX Association

33rd USENIX Security Symposium 2111

50 x 256. Moreover, we have filtered the level 7 intensity
to prevent visual clutter. While there are similarities among
them, it shall not be hard to find that discernible and repeatable
patterns do exist to classify these two keys.

5.4.2 Evaluation

We carry out our evaluations on a Linux platform running
Ubuntu 20.04. By default, Ubuntu 20.04 uses X11 as its win-
dowing system.” In terms of the desktop environment, we use
the default GNOME coming with the OS.

The GNOME virtual keyboard displays only letters every
time it is launched. As a first step, we investigate how accu-
rately the memorygrams can be used to deduce the pressed
letters. For this purpose, we collect 100 memorygrams for
each letter, which are used to train a DenseNet-121 model.
Given a GPU, the number of monitored cache sets and the
number of warps on each SM are consistent with our previous
case study. Subsequently, we capture another 10 memory-
grams per letter for testing. The resulting confusion matrices
are presented in Figure 12.

Predicted
|
|
|]
Predicted
Predicted
| |
n
-
|

(a) RTX 3060. (b) RTX 3080. (c) RTXu 4060.

Figure 12: Heat maps corresponding to the testing results based on
memorygrams for ‘a’ to ‘z letters.

From the confusion matrices, we can observe that letters,
in most cases, are distinguishable. The average accuracies
for RTX 3060, 3080, and 4060 are 83.1%, 98.1%, and 67.7%
respectively. In comparison, a random guess will yield an
accuracy of just 3.8%. This disparity underscores the informa-
tion leakage from GPU cache activities during the rendering
of keystroke visual effects on the screen.

For the RTX 3060 GPU, we note a peculiar trend: the recog-
nition performance for letters ‘1’, m’, and ‘n’ is substantially
lower than for the other letters. Conversely, the RTX 3080
outperforms both, delivering the best results. It is interesting
to note that while RTX 3080 has a larger cache size than
RTX 3060, it is significantly smaller than that of RTX 4060.
However, the recognition performance of RTX 4060 is the
lowest.

The lower performance of the RTX 4060 relative to the
RTX 3060 and 3080 can be attributed to the fact that we only
monitored 1472 cache sets for the RTX 4060, whereas all

4Although newer versions of Ubuntu, e.g., 22.04, have made Wayland the
default windowing system, there are compatibility issues with NVIDIA GPUs.
As aresult, when NVIDIA GPUs are detected, the system will automatically
switch back to X11.

cache sets are monitored for the other two GPUs. While this
configuration suffices for coarse-grained tasks like website
fingerprinting, fine-grained tasks necessitate the selection of
more appropriate cache sets. We believe that by identifying
the most relevant ones, the performance on the RTX 4060 can
be substantially improved.

To access the numbers, users have to utilize the switch key
located at the bottom left, and when activated, the numbers
replace the first row of 10 letters exactly. We aim to determine
if the switch action and the numbers can be differentiated
from the letters (especially those in the first row) using our
memorygrams. To this end, we use 100 samples each for the
letters, numbers, and both switching actions (to numbers and
back to letters) to train a DenseNet-121 model, and another
10 samples for testing.

Considering the action of switching to or from numbers,
our data set comprises 37 classes. For the GPUs RTX 3060,
3080, and 4060, the average accuracies achieved are 68.6%,
77.3%, and 67.3%, respectively. Intriguingly, despite the num-
bers and the letters from the first row occupying the same
screen position, they are distinguishable to some extent. (The
corresponding confusion matrices are given in Figure 15 in
Appendix E.) We believe the distinguishability between char-
acters, such as ‘p’” and 0, is due to each being mapped to
distinct buffer addresses in the GPU memory.

A further point of interest is the contrasting performance
trends between the GPUs. While both RTX 3060 and 3080
exhibit a decrease in accuracy, the RTX 4060’s performance
remains very consistent. This stability can be attributed to
RTX 4060’s very large cache size, which has the capacity
to house the entire frame buffer (even though we have not
chosen the most appropriate ones).

Next, we evaluate if we can extract a user’s system login
password entered via the virtual keyboard. For demonstration
purposes, we select four commonly used and pwned pass-
words as listed by the National Cyber Security Centre [39].
These four passwords are given in Table 4.

0 500 1000 1500 2000 2500

Figure 13: GPU L2 contention intensity trace, where the x-axis gives
cache sets and the y-axis gives the time (derived from the recorded
context switch times as stated in Section 4.1).

We capture the GPU L2 contention intensity traces when
the victim is prompted to input their system login pass-
word. This scenario can occur frequently because, by default,
Ubuntu, along with many other Linux distributions, goes to a
black screen after 5 minutes of inactivity. Upon returning, the
user is asked to provide the login credentials. Figure 13 illus-

2112 33rd USENIX Security Symposium

USENIX Association

trates a trace captured on an RTX 3080 GPU corresponding
to the input of the password shown in the first entry of Table 4.
From this trace, it is evident that the individual memorygrams
can be readily distinguished. The topmost bar signifies the
system’s awakening from the black screen state, followed by
the second bar which indicates the act of toggling the num-
ber/letter switch.

Table 4: Results of inferring four commonly used login passwords. A
correct inference is denoted by v/and an incorrect one is denoted by
X. The symbol ‘@’ indicates the action of switching between letters
and numbers.

Password Keystrokes RTX 3060 RTX 3080 RTX 4060
123456 @123456 VXX XS XIS VXX
querty querty 12.582.04 L2524 VXX
abcl123 abc@123 22224 28244 122,544

lgaz2wsx | 81@qazl2Cwsx | VXVXV/ X/ X/ | VXV X/ VXX | VXISV XX

For our evaluation, we employ a DenseNet-121 model,
training it with 300 samples for each character. An analysis of
Table 4 reveals that we can indeed decipher many segments
of these passwords. A significant portion of the errors stems
from the confusion between numbers and letters. The most
reliably recognized keystroke is the switching between letters
and numbers.

5.5 Discussion

A common limitation across both case studies is that they
require the execution of native code with user-level privileges
on the victim’s machine. However, it is essential to note that
such a condition is not always necessary for employing the
primitive in some more practical scenarios. For example, we
find that many major cloud service providers (e.g., Azure [34])
offer VMs powered by NVIDIA vGPUs, and in this context,
our INVALIDATE+COMPARE primitive can be leveraged to
facilitate cross-vGPU side-channel attacks without requiring
native code execution on the victim’s VM. Moreover, a num-
ber of companies have adopted virtual desktop infrastructures
sharing high-end GPUs to support their daily business opera-
tions [42, 46], creating additional venues where the primitive
can be used for potential side-channel attacks.

We should also mention that unlike website fingerprinting,
the demonstrated virtual keystroke extraction is a more fine-
grained attack, whose success greatly depends on whether the
victim’s on-screen keyboard uses the same GPU memory area
as the one used by the attacker during profiling. While this is
difficult to control when the GPU is actively in use, we have
discovered that when the system is idle for a certain period,
the X11 server reduces its usage of GPU physical memory to
a fixed level. Upon activation, the system normally utilizes
the same GPU memory area for the virtual keyboard, which
creates a favorable scenario for the attacker to perform the
keystroke extraction.

6 Countermeasures

To prevent the exploitation of our timer-free attack primitive,
we propose several possible countermeasures. The first one is
to simply disable the use of the discard instruction. To this
end, we can directly remove the support for this PTX instruc-
tion in the compiler toolchain. However, this straightforward
patch can be easily circumvented by altering instructions in
the compiled binary files to match the encoding of discard.
An alternative method is to enable the NVIDIA driver to in-
spect user programs for discard instructions and reject the
launch of their kernels if detected. While such an in-driver
defense raises the bar for attackers, it can still be bypassed by
modifying instructions in GPU code pages at run time.

A more effective solution is to disable this instruction in
hardware. Nevertheless, due to the lack of publicly accessible
information, it is uncertain whether the instruction can be
disabled via a GPU firmware update, or if a less desirable
hardware modification is necessary. Even if a firmware up-
date can achieve the objective, the potential ramifications for
existing software still need to be determined.

As the root cause of the examined information leakage
stems from observable contentions in the GPU L2 cache, the
other mitigation direction we can work on is to seal off this
source. Given the fact that GPU contexts cannot execute in
parallel, our focus narrows to managing the serialized use of
the L2 cache. One feasible way to achieve this is to let the
runtime flush the contents in L2 every time GPU contexts are
scheduled. While clean cache lines can be directly invalidated,
dirty ones need to be written back to GPU memory. A primary
concern with this approach lies in its potential impact on GPU
performance. However, as L2 flushing is only triggered upon
scheduling GPU contexts, an event that typically occurs on
the millisecond level, our anticipation is that the performance
degradation may be limited.

Additionally, given that eviction sets can be prepared a
single time offline and then utilized across all future online
attacks, it is undeniable that the task of an attacker is consid-
erably eased. This convenience arises from the way NVIDIA
drivers allocate GPU page frames, favoring physical contigu-
ity and consistently starting the allocation from the same ad-
dress. To neutralize this benefit for attackers, NVIDIA should
consider introducing a degree of randomness into its drivers
for GPU memory allocation.

7 Related Work

Extensive studies have been conducted on cache side-channel
attacks in the past two decades, and the majority of them
target cache hierarchies in CPUs like x86 and ARM [4,
32]. Overall, these studies exploit various attack primitives,
which can be classified into eviction-based and flush-based
types. PRIME+PROBE is the representative of the eviction-
based attack primitives [48], and it can be used for leaking

USENIX Association

33rd USENIX Security Symposium 2113

information across domains established by browser sand-
boxes [47, 55], SGX enclaves [35, 54, 70], VMs [15, 17,
30], and even networks [25, 61]. In terms of flush-based prim-
itives, FLUSH+RELOAD [10, 73] is the most notable one and
has been employed in a number of attacks [9, 18, 24, 28,
69]. Flush-based primitives typically can offer finer leakage
granularity than eviction-based ones, but they need to have
shared memory with the victim. Our attack primitive, in spite
of using a flush-like instruction on GPUs, is fundamentally
eviction-based.

Traditionally, cache side-channel attack primitives require
a high-resolution timer to distinguish between hits and misses.
As exceptions to this rule, several timer-free ones have been
devised, like PRIME+ABORT [2], DPRIME+DABORT [23],
S2C [74], and mwait-based primitives [76]. While these prim-
itives target x86 and ARM CPUs, ours is developed for
NVIDIA GPUs.

With GPUs becoming indispensable in modern computing,
their security issues have garnered much attention. There have
been works that examine website fingerprinting on GPUs [27,
38,57, 60, 72, 75]. While some of them capitalize on software
vulnerabilities present in device drivers [27, 38], others hinge
on coarse-grained contention, whether over PCle [57, 60] or
on the rendering pipeline [72]. These studies largely sidestep
delving into the GPU’s microarchitectural intricacies, which
is a primary emphasis of this paper.

On the other hand, techniques for keystroke extraction via
GPUs have also been investigated [38, 60, 72]. These studies
exploit the dependence of inter-keystroke timings on key dis-
tance and location to deduce which key is pressed [36, 58].
In contrast, our work is similar to approaches that leverage
different cache activities to directly extract the keys [9, 69].
Moreover, a GPU keylogger that reads the keyboard buffer
over PCle bus has been described in [26].

Besides our work, there exist other studies on exploiting
data caches of discrete GPUs for information leakage, all of
which are built on the traditional PRIME+PROBE primitive [3,
37]. In [37], several covert channels for data exfiltration are
constructed, but they require operation under MPS. In [3],
other than covert channel attacks, an application fingerprinting
case study is presented, albeit limited to only 6 applications.
Note that restricting access to timers, or adding noise to them,
which are used on CPUs, can also be applied to GPUs to
mitigate such PRIME+PROBE-based attacks; however, these
countermeasures will not affect attacks utilizing our timer-free
primitive.

8 Conclusion

In this paper, we have unveiled certain previously-unknown
characteristics of NVIDIA GPU caches for the first time and
introduced a new GPU cache side-channel attack primitive.
This new primitive enables effective spying on GPU cache
activities without relying on timers. Capitalizing on this ap-

proach, we have successfully orchestrated website fingerprint-
ing and keystroke extraction attacks on NVIDIA’s latest Am-
pere and Ada Lovelace GPUs. To our knowledge, these repre-
sent the first timer-free cache side-channel attacks on GPUs.
Our work highlights the need to scrutinize the information
leakage possibilities within GPU caches against microarchi-
tectural attacks.

Availability. The proof-of-concept implementation of our
primitive, including the method for constructing GPU L2
cache eviction sets, is available at https://github.com/0
x5eclab/invalidate-compare.git.

Acknowledgments

This work is supported in part by the NSF (CNS-2147217,
CNS-2340777, and CNS-2054657). The authors thank the
anonymous reviewers and shepherd for their comments and
suggestions that help us improve the quality of the paper.

References

[1] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob
Johnson. Touching from a Distance: Website Finger-
printing Attacks and Defenses. In CCS "12.

[2] Craig Disselkoen, David Kohlbrenner, Leo Porter, and
Dean Tullsen. Prime+Abort: A Timer-Free High-
Precision L3 Cache Attack using Intel TSX. In USENIX
Security ’17.

[3] Sankha Baran Dutta, Hoda Naghibijouybari, Arjun
Gupta, Nael Abu-Ghazaleh, Andres Marquez, and Kevin
Barker. Spy in the GPU-Box: Covert and Side Channel
Attacks on Multi-GPU Systems. In ISCA °23.

[4] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser.
A survey of microarchitectural timing attacks and coun-
termeasures on contemporary hardware. Journal of
Cryptographic Engineering, 8:1-27, 2018.

[S] GNOME. https://www.gnome.org/.

[6] Khronos Group. Vulkan - Cross platform 3D Graphics.
https://www.vulkan.org/.

[7] Khronos Group. OpenGL - The Industry Standard for
High Performance Graphics. https://www.opengl.o
rg/.

[8] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and
Stefan Mangard. Flush+Flush: A Fast and Stealthy
Cache Attack. In DIMVA ’16.

[9] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard.
Cache Template Attacks: Automating Attacks on Inclu-
sive Last-Level Caches. In USENIX Security ’15.

2114 33rd USENIX Security Symposium

USENIX Association

https://github.com/0x5ec1ab/invalidate-compare.git
https://github.com/0x5ec1ab/invalidate-compare.git
https://www.gnome.org/
https://www.vulkan.org/
https://www.opengl.org/
https://www.opengl.org/

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

David Gullasch, Endre Bangerter, and Stephan Krenn.
Cache Games — Bringing Access-Based Cache Attacks
on AES to Practice. In S&P '11.

Berk Gulmezoglu, Andreas Zankl, Thomas Eisenbarth,
and Berk Sunar. PerfWeb: How to Violate Web Privacy
with Hardware Performance Events. In ESORICS ’17.

Jamie Hayes and George Danezis. k-fingerprinting: A
Robust Scalable Website Fingerprinting Technique. In
USENIX Security '16.

Andrew Heaton. Nvidia Sold Out of RTX 4090 Graphics
Cards within Two Weeks. https://gamerant.com/n
vidia-sold-out-rtx-4090-graphics-cards-two
-weeks/.

Andrew Hintz. Fingerprinting Websites Using Traffic
Analysis. In PET °02.

Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui,
Thomas Eisenbarth, and Berk Sunar. Cache Attacks
Enable Bulk Key Recovery on the Cloud. In CHES ’16.

Intel. Intel® 64 and IA-32 Architectures Software De-
veloper’s Manuals. https://www.intel.com/cont
ent/www/us/en/developer/articles/technical
/intel-sdm.html.

Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar.
S$A: A Shared Cache Attack That Works across Cores
and Defies VM Sandboxing — and Its Application to
AES. In S&P ’15.

Gorka Irazoqui, Mehmet Sinan Inci, Thomas Eisenbarth,
and Berk Sunar. Wait a Minute! A fast, Cross-VM
Attack on AES. In RAID ’14.

Suman Jana and Vitaly Shmatikov. Memento: Learning
Secrets from Process Footprints. In S&P ’12.

Zhe Jia, Marco Maggioni, Jeffrey Smith, and
Daniele Paolo Scarpazza. Dissecting the NVIDIA
Turing T4 GPU via Microbenchmarking. CoRR,
abs/1903.07486, 2019.

Zhe Jia, Marco Maggioni, Benjamin Staiger, and
Daniele Paolo Scarpazza. Dissecting the NVIDIA Volta
GPU Architecture via Microbenchmarking. CoRR,
abs/1804.06826, 2018.

Mahmoud Khairy, Zhesheng Shen, Tor Aamodt, and
Timothy Rogers. Accel-Sim: An Extensible Simulation
Framework for Validated GPU Modeling. In ISCA ’20.

Sowoong Kim, Myeonggyun Han, and Woongki Baek.
DPrime+DAbort: A High-Precision and Timer-Free
Directory-Based Side-Channel Attack in Non-Inclusive
Cache Hierarchies using Intel TSX. In HPCA ’22.

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, et al. Spectre
Attacks: Exploiting Speculative Execution. In S&P ’19.

Michael Kurth, Ben Gras, Dennis Andriesse, Cristiano
Giuffrida, Herbert Bos, and Kaveh Razavi. NetCAT:
Practical Cache Attacks from the Network. In S&P ’20.

Evangelos Ladakis, Lazaros Koromilas, Giorgos Vasil-
iadis, Michalis Polychronakis, and Sotiris Ioannidis.
You Can Type, but You Can’t Hide: A Stealthy GPU-
based Keylogger. In EuroSec ’13.

Sangho Lee, Youngsok Kim, Jangwoo Kim, and Jong
Kim. Stealing Webpages Rendered on Your Browser by
Exploiting GPU Vulnerabilities. In S&P "14.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading Kernel Mem-
ory from User Space. In USENIX Security ’18.

Chen Liu, Abhishek Chakraborty, Nikhil Chawla, and
Neer Roggel. Frequency Throttling Side-Channel At-
tack. In CCS ’22.

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B Lee. Last-Level Cache Side-Channel Attacks
are Practical. In S&P ’'15.

Zhiye Liu. Nvidia’s RTX 4080 Tops Newegg’s List of
Best-Selling GPUs. https://www.tomshardware.c
om/news/nvidia-rtx-3080-top-newegg-gpu.

Yangdi Lyu and Prabhat Mishra. A Survey of Side-
Channel Attacks on Caches and Countermeasures. Jour-
nal of Hardware and Systems Security, 2:33-50, 2018.

Xinxin Mei and Xiaowen Chu. Dissecting GPU Memory
Hierarchy Through Microbenchmarking. IEEE Transac-
tions on Parallel and Distributed Systems, 28(1):72-86,
jan 2017.

Microsoft. NVadsA10 v5-series. https://learn.mi
crosoft.com/en-us/azure/virtual-machines/n
valOv5-series.

Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisen-
barth. CacheZoom: How SGX Amplifies the Power of
Cache Attacks. In CHES ’17.

John V Monaco. SoK: Keylogging Side Channels. In
S&P '18.

Hoda Naghibijouybari, Khaled N. Khasawneh, and Nael
Abu-Ghazaleh. Constructing and Characterizing Covert
Channels on GPGPUs. In MICRO ’17.

USENIX Association

33rd USENIX Security Symposium 2115

https://gamerant.com/nvidia-sold-out-rtx-4090-graphics-cards-two-weeks/
https://gamerant.com/nvidia-sold-out-rtx-4090-graphics-cards-two-weeks/
https://gamerant.com/nvidia-sold-out-rtx-4090-graphics-cards-two-weeks/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.tomshardware.com/news/nvidia-rtx-3080-top-newegg-gpu
https://www.tomshardware.com/news/nvidia-rtx-3080-top-newegg-gpu
https://learn.microsoft.com/en-us/azure/virtual-machines/nva10v5-series
https://learn.microsoft.com/en-us/azure/virtual-machines/nva10v5-series
https://learn.microsoft.com/en-us/azure/virtual-machines/nva10v5-series

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Hoda Naghibijouybari, Ajaya Neupane, Zhiyun Qian,
and Nael Abu-Ghazaleh. Rendered Insecure: GPU Side
Channel Attacks Are Practical. In CCS ’18.

NCSC. https://www.ncsc.gov.uk/static-asset
s/documents/PwnedPasswordsTopl00k.txt.

Leo Notenboom. Will Using an On-Screen Keyboard
Stop Keyloggers? https://askleo.com/will_usi
ng_an_on_screen_keyboard_stop_keyboard_log
gers_and_hackers/.

NVIDIA. CUDA C++ Programming Guide. https:
//docs.nvidia.com/cuda/cuda-c-programming-
guide/index.html.

NVIDIA. GPU-Powered Virtual Workstations Offer
Greater Performance and Flexibility. https://resour
ces.nvidia.com/en-us-media-and-entertainme
nt/vgpu-media-entertain.

NVIDIA. NVIDIA Ampere Architecture Whitepaper.
https://www.nvidia.com/content/PDF/nvidia-
ampere-ga-102-gpu-architecture-whitepaper—
v2.1l.pdf.

NVIDIA. NVIDIA Announces Financial Results for
Fourth Quarter and Fiscal 2022. https://nvidiane
ws.nvidia.com/news/nvidia-announces-financ
ial-results-for-fourth-quarter-and-fiscal-
2022.

NVIDIA. Parallel Thread Execution ISA Version 8.1.
https://docs.nvidia.com/cuda/parallel-thre
ad-execution/.

NVIDIA. vGPU and AECO Solution Showcase. https:
//images.nvidia.com/content/Solutions/data
-center/vgpu-aeco-solution-showcase.pdf.

Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadha-
van, and Angelos D. Keromytis. The Spy in the Sand-
box: Practical Cache Attacks in JavaScript and Their
Implications. In CCS ’15.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
Attacks and Countermeasures: The Case of AES. In
CT-RSA °06.

Andriy Panchenko, Fabian Lanze, Jan Pennekamp,
Thomas Engel, Andreas Zinnen, Martin Henze, and
Klaus Wehrle. Website Fingerprinting at Internet Scale.
In NDSS ’16.

David A. Patterson and John L. Hennessy. Computer
Architecture: A Quantitative Approach. Morgan Kauf-
mann Publishers Inc.

(51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede.
Prime+Scope: Overcoming the Observer Effect for
High-Precision Cache Contention Attacks. In CCS *21.

Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom
Van Goethem, and Wouter Joosen. Automated website
fingerprinting through deep learning. In NDSS ’18.

Peter Van Sandt and Zhe Jia. Dissecting the Ampere
GPU Architecture through Microbenchmarking. https:
//www.nvidia.com/en-us/on-demand/session/g
tcspring21-s33322/.

Michael Schwarz, Samuel Weiser, Daniel Gruss, Clé-
mentine Maurice, and Stefan Mangard. Malware Guard
Extension: Using SGX to Conceal Cache Attacks. In
DIMVA ’17.

Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell,
Daniel Genkin, Yossi Oren, and Yuval Yarom.
Prime+Probe 1, JavaScript 0: Overcoming Browser-
based Side-Channel Defenses. In USENIX Security
21.

Anatoly Shusterman, Lachlan Kang, Yarden Haskal,
Yosef Meltser, Prateek Mittal, Yossi Oren, and Yuval
Yarom. Robust Website Fingerprinting Through the
Cache Occupancy Channel. In USENIX Security ’19.

Mert Side, Fan Yao, and Zhenkai Zhang. LockedDown:
Exploiting Contention on Host-GPU PCle Bus for Fun
and Profit. In EuroS&P ’22.

Dawn Xiaodong Song, David Wagner, and Xuqing Tian.
Timing Analysis of Keystrokes and Timing Attacks on
SSH. In USENIX Security *01.

Wei Song and Peng Liu. Dynamically Finding Minimal
Eviction Sets Can Be Quicker Than You Think for Side-
Channel Attacks against the LLC. In RAID ’19.

Mingtian Tan, Junpeng Wan, Zhe Zhou, and Zhou Li.
Invisible Probe: Timing Attacks with PCIe Congestion
Side-channel. In S&P "21.

Mohammadkazem Taram, Ashish Venkat, and Dean
Tullsen. Packet Chasing: Spying on Network Packets
over a Cache Side-Channel. In ISCA ’20.

TechPowerUp. NVIDIA A10 PCle. https://www.te
chpowerup.com/gpu-specs/al0-pcie.c3793.

TechPowerUp. NVIDIA A2 PCle. https://www.te
chpowerup.com/gpu-specs/a2-pcie.c4112.

TechPowerUp. NVIDIA GeForce RTX 3060 12 GB.
https://www.techpowerup.com/gpu-specs/gefo
rce-rtx-3060-12-gb.c3682.

2116 33rd USENIX Security Symposium

USENIX Association

https://www.ncsc.gov.uk/static-assets/documents/PwnedPasswordsTop100k.txt
https://www.ncsc.gov.uk/static-assets/documents/PwnedPasswordsTop100k.txt
https://askleo.com/will_using_an_on_screen_keyboard_stop_keyboard_loggers_and_hackers/
https://askleo.com/will_using_an_on_screen_keyboard_stop_keyboard_loggers_and_hackers/
https://askleo.com/will_using_an_on_screen_keyboard_stop_keyboard_loggers_and_hackers/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://resources.nvidia.com/en-us-media-and-entertainment/vgpu-media-entertain
https://resources.nvidia.com/en-us-media-and-entertainment/vgpu-media-entertain
https://resources.nvidia.com/en-us-media-and-entertainment/vgpu-media-entertain
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.1.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.1.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.1.pdf
https://nvidianews.nvidia.com/news/nvidia-announces-financial-results-for-fourth-quarter-and-fiscal-2022
https://nvidianews.nvidia.com/news/nvidia-announces-financial-results-for-fourth-quarter-and-fiscal-2022
https://nvidianews.nvidia.com/news/nvidia-announces-financial-results-for-fourth-quarter-and-fiscal-2022
https://nvidianews.nvidia.com/news/nvidia-announces-financial-results-for-fourth-quarter-and-fiscal-2022
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://images.nvidia.com/content/Solutions/data-center/vgpu-aeco-solution-showcase.pdf
https://images.nvidia.com/content/Solutions/data-center/vgpu-aeco-solution-showcase.pdf
https://images.nvidia.com/content/Solutions/data-center/vgpu-aeco-solution-showcase.pdf
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s33322/
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s33322/
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s33322/
https://www.techpowerup.com/gpu-specs/a10-pcie.c3793
https://www.techpowerup.com/gpu-specs/a10-pcie.c3793
https://www.techpowerup.com/gpu-specs/a2-pcie.c4112
https://www.techpowerup.com/gpu-specs/a2-pcie.c4112
https://www.techpowerup.com/gpu-specs/geforce-rtx-3060-12-gb.c3682
https://www.techpowerup.com/gpu-specs/geforce-rtx-3060-12-gb.c3682

[65] TechPowerUp. NVIDIA GeForce RTX 4060. https:
//www.techpowerup.com/gpu-specs/geforce-rt
x-4060.c4107.

[66] Mark Tyson. Nvidia RTX 3060 Begins its Reign as the
Most Popular GPU. https://www.tomshardware.c
om/news/nvidia-rtx-3060-begins-its-reign-a
s—-the-most-popular-gpu.

[67] Pepe Vila and Boris Kopf. Loophole: Timing Attacks
on Shared Event Loops in Chrome. In USENIX Security
'17.

[68] Pepe Vila, Boris Kopf, and José F Morales. Theory and
Practice of Finding Eviction Sets. In S&P ’19.

[69] Daimeng Wang, Ajaya Neupane, Zhiyun Qian, Nael B
Abu-Ghazaleh, Srikanth V Krishnamurthy, Edward JM
Colbert, and Paul Yu. Unveiling your keystrokes: A
Cache-based Side-channel Attack on Graphics Libraries.
In NDSS ’19.

[70] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yingian
Zhang, XiaoFeng Wang, Vincent Bindschaedler, Haixu
Tang, and Carl A. Gunter. Leaky Cauldron on the Dark
Land: Understanding Memory Side-Channel Hazards in
SGX. In CCS ’17.

[71] Henry Wong, Misel-Myrto Papadopoulou, Maryam
Sadooghi-Alvandi, and Andreas Moshovos. Demystify-
ing GPU Microarchitecture through Microbenchmark-
ing. In ISPASS ’10.

[72] Shujiang Wu, Jianjia Yu, Min Yang, and Yinzhi Cao.
Rendering Contention Channel Made Practical in Web
Browsers. In USENIX Security ’22.

[73] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD:
A High Resolution, Low Noise, L3 Cache Side-Channel
Attack. In USENIX Security ’14.

[74] Jiyong Yu, Aishani Dutta, Trent Jaeger, David Kohlbren-
ner, and Christopher W. Fletcher. Synchronization Stor-
age Channels (S2C): Timer-less Cache Side-Channel
Attacks on the Apple M1 via Hardware Synchronization
Instructions. In USENIX Security '23.

[75] Zihao Zhan, Zhenkai Zhang, Sisheng Liang, Fan Yao,
and Xenofon Koutsoukos. Graphics Peeping Unit:
Exploiting EM Side-Channel Information of GPUs to
Eavesdrop on Your Neighbors. In S&P '22.

[76] Ruiyi Zhang, Tachyun Kim, Daniel Weber, and Michael
Schwarz. (M)WAIT for It: Bridging the Gap between
Microarchitectural and Architectural Side Channels. In
USENIX Security ’23.

[77] Yingian Zhang, Ari Juels, Michael K. Reiter, and
Thomas Ristenpart. Cross-VM Side Channels and Their
Use to Extract Private Keys. In CCS ’12.

[78] Zhenkai Zhang, Tyler Allen, Fan Yao, Xing Gao, and
Rong Ge. TunneLs for Bootlegging: Fully Reverse-
Engineering GPU TLBs for Challenging Isolation Guar-
antees of NVIDIA MIG. In CCS ’23.

[79] Zhenkai Zhang, Sisheng Liang, Fan Yao, and Xing Gao.
Red Alert for Power Leakage: Exploiting Inte]l RAPL-
Induced Side Channels. In ASIA CCS ’21.

A Supplement to Write Policy Study

To confirm that B is never evicted from X’s L1 cache in the ex-
periment presented in Section 3.3 (see Figure 2), we proceed
with the following three steps after Y reads B (recall that here
Y always retrieves 1) — First, Y discards B. Next, Y reads B to
check its value. Finally, X reads B to check its value.

We consistently observe that after Y executes the discard
instruction on B, its subsequent read returns 0, as expected
since B is now fetched from GPU memory. Notably, X con-
sistently retrieves the value 1 for B. If B had been evicted
from x’s L1 cache, X would also retrieve 0, echoing Y’s read
value after invalidation of B. Therefore, this indicates that B
remains in X’s L1 cache throughout the experiment presented
in Section 3.3.

B Replacements during Set Population

In the case where only 1d is used, we surprisingly observe
replacements in the course of filling a set, as illustrated in Fig-
ure 14. Starting from an empty cache set, we first read from 8
addresses (i.e., Ag,Aq, - - ,Ag), reaching the state Sy. Interest-
ingly, when loading from another address Ao, the cache line
corresponding to Ay is evicted, even though the cache set is
only half full. However, when reading from Ao, no eviction
occurs until the subsequent load. This process continues until
the cache set reaches the filled state (i.e., the state S14). Af-
ter this point, the cache set’s replacement behavior using 1d
aligns with the LRU policy. Notably, the initial replacement
pattern does not match any known policy.

[AdJAJAo[As[Ad AsA[Ar[As] T]] So

xxxxxxxxx

[AJAAJAJA[ATA A AL | |

)5,

| S

[T 11

[T 11
(AR As[A As[As[ArfAs[As]A] T T T T T]2

[T 11

[T 11

IAzIA3|A4IAslAe[Ay[Ag[Ag!AwlAulAul]S4

[A7]As[A lAg)lA111A12IA13|A141A15|A151A171A18 Ao AZdAZIEQdSI 1

Figure 14: Populating an L2 cache set using 1d.

USENIX Association

33rd USENIX Security Symposium 2117

https://www.techpowerup.com/gpu-specs/geforce-rtx-4060.c4107
https://www.techpowerup.com/gpu-specs/geforce-rtx-4060.c4107
https://www.techpowerup.com/gpu-specs/geforce-rtx-4060.c4107
https://www.tomshardware.com/news/nvidia-rtx-3060-begins-its-reign-as-the-most-popular-gpu
https://www.tomshardware.com/news/nvidia-rtx-3060-begins-its-reign-as-the-most-popular-gpu
https://www.tomshardware.com/news/nvidia-rtx-3060-begins-its-reign-as-the-most-popular-gpu

WWWWIWWWwwmmIMH””MHMHM”HH””WHIH
ccccBeccass

CHRM T O GoGPA VDO GET YT EEOAGL Nl 55K aN

pa1Ipaid

wwnm-w“WH”HHHHHUHHMHHHH

CHAMINOR DO GRA VDO GE T YT ECOaTLlul 558X on

pa1dIpald

CHCCHE- i
ccocofecccs

cEmciis

0000000100001000000011 100000000000

mmﬂ”H”H”H”H”HHHH”,MHHH

CHAMTnOr GO GRA VDO BE - YT EEORDLnl 558X aN

pa121paid

o
o
1
o
o
o
o
o
o
o
o
o
o
o
0
o
o
o
o
o
z

0123456789@abcdefghijkimnopgrstuvwxyz 0123456789@abcdefghijkimnopqrstuvwxy

0123456789@abcdefghijkimnopqrstuvwxyz

True
(c) RTX 4060.

True

(b) RTX 3080.

True
(a) RTX 3060.

h

1tc

Its based on memorygrams for ‘a’ to ‘z letters, ‘0’ to ‘9 numbers, and sw

ing resu

he test

ing to t

x correspondi

ion matri

Confus
action between letters and numbers (shown as ‘@”).

Figure 15

E Confusion Matrices

C Time Slice Measurement

F6655505055055050505000050000050005005500005555000655550M

lbcococcocoocoococococoococoocoo0cooo000000000000000o0ooofooool

lbocccoccocccccocooco00000000000000000000000ofoccoooo
00000000UDU00000000UUD0000000000000000000000000000
lboccccccoccoccoccocoocoomoocoooroooc0000000oofocoooooool
locococococoocoococoocoocooocoocooocoocooooocoooocoocofoccoocococoo
UOUBUUOUBDU00000000BBUUOUUBUUOUUDUUOUUUDUOUBUUOOUD
00000000DOO000000000000000000000010005010000000000
lbocococcocococoooc00000000000000000000foococ00000000
000UUO00000000UUO00000000UDO0000000000000000000000\
e . o pu e p et
] X T T TP P-P-=prpupupupupupn
lpcooococoocoocoocoocoocoooocoooococoflcocoocooocoocooroco0
lpococoocoocooococoocooocoocooocoocoooocooffococoocococoocooocoooo
loococococococorooo000000000000foccoc00000000000000f
e T T L T peprpupuprpuprpupupn
lococoocoocoococoocoocooocoocooococoofccoocococoocoococoocoocoooo0
locoocococoocoococoocooocoocoooocoocoffcocoocococoocoocoocooococoo
lpcooocoocoocococoocoocoocooococooffococooococooooocoocooococo0
0000000000000000000000000(000000000000000000000000\
lbocccoccocococcocoocoooc0oofocccoccooc0000000000000000
lboccccccoccococcocoocooocoofoococcoccoo0oc000000000000000
lboccccccocooccocococcoooooflocccccoccccococ0o00c000000000
lboocococcocoococococoocoocococoofccccocccocococooo00000000000000
lbocccccoccoccocccccoflbccccoco00000000000000m000000f
lbooncococonN00000000000000000000000000000000000000
lbocccccocococooocol6000000000000000000000000000000
lbocccocccoooccoccococofloccoccocoo00000i00000000000000000
lbococccccoccocococoofocccccccocoocooo0c0c000000000000000
lbocccccococcococoofocccccccoccco000000000000000000000f
lbococcoccococccofl600000000000000H0000000000000000000
[cocococococococooococolcc000c00H0000000000000000000000000000
lboccococcococoocofococc000000000000000000000000000000000
lbocccocccococoofoccccooocococcoo00000000000000000000000
lbocccoccoccocoflccccccconocccooco0co000000000000000000000f
lboccoccocoofocccccccccoccc00000000000000000000000000
oooooooozooo0ooooooooooooooooooooooooooooooooooooo

16 21 31 36 41 46
True

11

oocuu:oocuoooonuooocuuooocuuoooouoooouuuoocunooouu‘G

Bl 000H00000OF

pa1dIpald

ly by

1nant

thod across sev-

is me

h
dentifying the minimum

Iculated as %Z?ﬂl P(i) and

ices using t

L

, such as GPU benchmarks, neural network

1me s

ight upper bound for the allocated time

18101 1S Ca

icted in Figure 7a. The delta from this

te them using the first context switch detec-
1, our primary concern is i

tion approach dep

can approxima
, which we find to be generated predom

ications
training, games, and web browsers. We have observed that

GPU benchmarks and games tend to have large time slices.

ice

1

web browsers.

time s
on website fingerprinting. Since there are 50 websites, the

We cannot determine the exact allocated time slices, but we
Table 5 lists the websites that are used in our evaluations

slice. We assessed the t;
macro-averaged prec

approach provides a t
D Website List

eral appl
Howeve

| R(i), where

50
=

X

L
50

P(i) and R(i) represent the precision and recall for the i

the macro-averaged recall is calculated as
website, respectively.

Confusion matrix corresponding to using the model

Figure 16

d with data from M to classify 1,000 samples from M,. The

numbers on the axes correspond to the websites in Table 5.

traine

List of fingerprinted websites

Table 5

3: www.amazon.com

2: www.adobe.com
5: www.apple.com

1: www.accuweather.com

4: www.aol.com

7: www.bbc.com
10: www.booking.com

13: www.craigslist.org
16: www.ebay.com

6: www.bankofamerica.com

9: www.bing.com
12: www.cnn.com

8: www.bestbuy.com
11: www.chase.com

15: www.duckduckgo.com

18: www.etsy.com

14: www.discord.com

17: www.espn.com
20: www.fandom.com

21: www.foxnews.com

19: www.facebook.com
22: www.google.com

23: www.homedepot.com 24: www.imdb.com

26: www.linkedin.com
29: www.msn.com

27: www.live.com

25: www.instagram.com
28: www.max.com
31: www.nfl.com

30: www.netflix.com
33: www.office.com

32: www.nytimes.com
35: www.reddit.com
38: www.spotify.com
41: www.twitter.com

36: www.roblox.com
39: www.tumblr.com

34: www.quora.com
37: www.slack.com

40: www.twitch.tv

42: www.usatoday.com
45: www.whatsapp.com
48: www.youtube.com

44: www.weather.com
47: www.yahoo.com
50: www.zoom.us

43: www.walmart.com

46: www.wikipedia.org
49: www.zillow.com

USENIX Association

2118 33rd USENIX Security Symposium

	Introduction
	Background
	GPU Architecture
	GPU Programming
	GPU Context

	GPU Cache Characteristics
	The discard PTX Instruction
	Inclusion Policy
	Write Policy
	Write Allocation Policy
	L1 Cache Auto-Flushing
	Associativity and Replacement

	Invalidate+Compare
	GPU Context Switch Detection
	Eviction Set Construction
	Primitive Revision
	Execution Time v.s. Allocated Time Slice

	Case Studies
	Threat Model
	Eviction Set Preparation
	Website Fingerprinting
	Investigation
	Evaluation

	Virtual Keystroke Extraction
	Investigation
	Evaluation

	Discussion

	Countermeasures
	Related Work
	Conclusion
	Supplement to Write Policy Study
	Replacements during Set Population
	Time Slice Measurement
	Website List
	Confusion Matrices

