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Abstract—Information leakage through processor microarchi-
tectural components exploiting speculative execution is raising
significant security concerns. Modern commercial processors
incorporate branch predictor designs where internal states of
branch predictor structures are speculatively updated. Recent
studies have shown that speculatively updated branch predictors
allow side channel exploitation in the speculative domain, ex-
tending branch predictors to be another source of transmitting
medium in transient execution attacks. While postponing updates
of branch predictor states at a later time (e.g., during commit)
can avoid exploitation in the speculation domain, it can result in
belated correction of prediction outcomes (e.g., branch direction),
leading to non-trivial degradation of prediction performance.

In this paper, we present BeKnight, a secure branch predictor
design that defeats speculative side channels targeting the branch
direction prediction structure as the source of leakage. BeKnight
aims to retain the performance advantage of early branch predictor
updates (i.e., at resolution time) while ensuring no transient
leakage. To achieve this, BeKnight conscientiously tracks the own-
ership and speculative changes of potentially unsafe pattern his-
tory entries using a small Speculative Pattern Lookaside Buffer
(SPLB). BeKnight efficiently audits the use of pattern history by
allowing subsequent predictions in the same domain to benefit
from early updates while annulling potential leakage through
ensuring architecturally correct pattern is used on detection of a
domain conflict. We evaluate the performance of BeKnight using
24 representative workloads from SPEC-2017. Notably, BeKnight
achieves almost identical performance compared to the system
with insecure but performant speculatively-updated predictors.

I. INTRODUCTION

Modern processors heavily rely on speculation to offer high
instruction level parallelism. Particularly, branch prediction
unit (BPU) performs branch direction and target predictions,
enabling the processor to continuously feed instructions to the
front-end to minimize pipeline stalls. Branch mispredictions
introduce wrong-path execution of instructions, also known as
transient execution. As transient execution defies the expected
program semantic, the underlying speculation hardware is
designed to ensure no architectural state changes are remained
due to wrong-path execution. However, microarchitectural
states (e.g., in caches) may be altered but not properly purged,
leading to transient execution attacks [1].

Compared to classical side channels [2]–[8], transient exe-
cution attacks can exfiltrate program unintended secrets (e.g.,
cross boundary or security domain) [1], [9]–[12]. Typically,
such attacks use branch predictors as the triggering mech-
anism to induce wrong-path executions. Recent works [10],
[13] have revealed modern processors (e.g., Intel CPUs)

1 secret[] = {0,...,1};
2 data[SIZE];
3 if (idx < SIZE) //bp: trigger speculation
4 x = data[idx]; //speculative load
5 if (x) y++; //bv: nested speculation
6 else y--;

Listing 1: Transient execution attacks in speculatively-updated
branch predictors. data[idx] points to secret in speculation.

integrate speculatively-updated branch predictors. In partic-
ular, the state of branch prediction structures, such as the
pattern history table (PHT), is updated at the resolution of
conditional branches in the speculation path (e.g., in nested
speculation). Moreover, these alterations are not cleared after
speculative branches are eventually squashed. This makes
branch predictors vulnerable to information leakage in the
speculation domain, rendering BPUs exploitable as the trans-
mitting medium in transient execution. Listing 1 shows a code
snippet illustrating this vulnerability. Victim has two branches,
bp and bv , where branch bv can execute transiently under
the shadow of bp. Attacker controls idx to point to the un-
intended sensitive values (secret) and trains the PHT to make
bp mispredict. If bv gets resolved before bp’s misprediction
is detected, the BPU will update the states of PHT based on
bv’s predicate. Later when bv is squashed, the state change
made by transient execution of bv remains. The attacker then
executes a branch congruent to bv and measures its timing to
infer the value of secret (see Section III for details).

Speculation-based BPU side channels are extremely dan-
gerous since 1) they can potentially target any branch in
nested speculation, thus defensive mechanisms avoiding direct
control/data flow dependency on secrets are insecure [13]. For
instance, in Listing 1, secret is not directly operated on using
any branches; 2) such attacks leverage the branch predictor
exclusively for both transient execution trigger and speculative
secret transmission. Therefore, they can manifest even when
all other microarchitectural components are not exploitable.
In particular, the code in lines 5 and 6 of Listing 1 can not
be exploited through other mediums such as cache since the
instructions are in the same cache line and the same data (i.e.,
variable y) is accessed in each branch direction. Recently,
several mitigation techniques have been proposed to improve
BPU microarchitecture security [11]. Specifically, resource
isolation [14], [15] and access randomization techniques [15]–
[17] mitigate leakage by disabling modulating or inferring



microarchitectural states. While such schemes can potentially
avoid using BPU as a classical side channel, they typically
suffer from low scalability, non-trivial performance overhead,
and hardware cost. Secure oblivious speculation frameworks
(e.g., [18]–[22]) prevent speculative secrets propagation by
delaying microarchitectural state changes until the correspond-
ing instructions are deemed to be committed. While these
approaches can defeat a wide spectrum of transient execution
attacks, they do not evaluate the positive performance impact
of early speculative state updates of BPU.

In this work, we propose BeKnight, a low-cost secure spec-
ulation design for speculatively-updated branch predictors that
guards against side channels in the speculation domain. Moti-
vated by the sensitivity of time-to-update for BPUs, BeKnight
aims to retain the performance advantage for speculatively-
updated branch predictors while ensuring that speculation-
domain leakage is disbanded. Particularly, BeKnight dynami-
cally tracks the ownership of unsafe PHT entries exploitable
in the speculation domain. To provide both post-speculation
security and in-speculation security, BeKnight maintains a
small speculative pattern lookaside buffer (SPLB) that records
the speculative updates of SPLB entries while maintaining
the architecturally correct state in-place. BeKnight opportunis-
tically uses the unsafe speculative updates from SPLB to
benefit prediction for same-domain accesses while ensuring
cross-domain accesses are served through leakage free PHT.
We implement a prototype of BeKnight and evaluate its
efficacy with 24 single-program and multi-program workloads
built from SPEC-2017. Our evaluation shows BeKnight offers
security guarantee against BPU attacks in the speculation do-
main while exhibiting almost similar performance as insecure
but performant BPU in modern processors with negligible
hardware cost. In summary, the contributions of our work are:

• We explore the impact of speculative updates of BPU and
systematically investigate the rationale of speculatively-
updated branch predictors in commercial processors.

• We perform extensive characterization of PHT updates
due to branches in transient execution path among var-
ious workloads, motivating the design of low-overhead
tracking mechanisms for unsafe speculative updates.

• We propose BeKnight, a secure branch predictor that
defeats the use of direction prediction as a transmitting
medium in transient execution attacks. BeKnight is fully
integrated with modern branch predictor that can elimi-
nate any speculation leakage through on-demand clearing
of non-architectural states of PHT.

• We implement BeKnight and evaluate its efficacy us-
ing single- and multi-program workloads. Results shows
BeKnight can effectively thwart BPU speculation leakage
with very low performance overhead.

II. BACKGROUND

Branch Prediction Unit. BPU is a per-core structure that
dictates the control flow of program execution. BPU at a
high level presents two primary functions: direction prediction
(e.g., taken or not taken) and target address predictions (e.g.,
for indirect jumps). BPU generally maintains both pattern

Fig. 1: Direction prediction mechanism in modern BPU.
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Fig. 2: Performance of commit-time and resolution-time update
of PHT without restoration for misprediction.

history (i.e., in PHT) and branch history (i.e., in Global
History Register or GHR) to aid direction predictions. In one-
level prediction mode, the predictor merely uses the branch
instruction address to index into the PHT. Differently, the
history-based prediction mode leverages global branch history
in GHR along with branch address for PHT access (e.g.,
gShare [23]). BPU often harnesses a hybrid scheme where
a selection logic is integrated to dynamically choose the
predictions from the best performing branch predictors [2].
Figure 1 illustrates a hybrid branch predictor similar to the
designs in recent Intel processors [2].

Microarchitectural Timing Channel Attacks. Side channels
in hardware have been demonstrated on various processor
components, such as TLBs, caches and branch predictors [2],
[3], [6], [24]–[26]. Transient execution attacks [1], [11], [12],
[27] enable an adversary to access unintended data in the
system speculatively and subsequently extract them via a
microarchitectural side channel. While non-speculative side
channels rely solely on the victim’s secret-dependent control
flow or data flow [2], [9], [13], [28], transient execution
attacks are even more perilous as they significantly extend
the attacker’s data access.

Attacks on Branch Predictors. Existing attacks on BPUs in
the non-speculative domain exploit secret-dependent control
flow, where a specific PHT entry is updated based on program-
defined secrets like cryptographic keys. By observing the
prediction behavior of a related branch using timing, attackers
can recover the secret. Previous works have demonstrated both
side and covert channels through such exploits [2], [3], [7].
PHT collisions have been shown in both one-level predic-
tors [2] and history-based predictors [13]. It is worth noting
that incorporating secret-dependent control flow is known to
introduce side channels. These attacks can be mitigated by
avoiding explicit conditional branching on secretive program
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Fig. 3: Leakage from speculatively updated direction predictor.

data, which is commonly practiced in many cipher imple-
mentations such as OpenSSL DSA/ECDSA and GnuPG [29].
Recent studies [13], [27] reveal that BPUs in commercial
processors update the PHT based on branch resolutions, even
if those branch instructions are later discarded. Speculative
updates of branch predictors significantly expand the attack
surface to the speculative domain. These BPU attacks are
particularly dangerous because any conditional branch in the
transient execution path can leak information.

III. MOTIVATION AND PROBLEM ANALYSIS

Modern processors employ deep pipeline stages capable
of handling long speculation paths, with speculation window
extending up to thousands of cycles [18], [27]. To prevent
pipeline stalls, processors employ nested speculation, exe-
cuting subsequent branches while the earlier branch remains
unresolved. Consequently, there is a possibility that later
branches are resolved before the legitimacy of their execution
path is verified. The performance of branch prediction can
be significantly influenced by the timing of branch predictor
updates for speculatively executed branches [30]–[32]. Our
investigation reveals that commercial processors, including
recent Intel processors, update the PHT at branch resolu-
tion time. More importantly, transient branch executions do
not restore PHT states after speculation is corrected. We
hypothesize the major reason is that reducing the number
of cycles between branch prediction and branch predictor
update can improve branch prediction performance in deeply
pipelined processors [30]. Specifically, updating the PHT at
resolution time allows training of the corresponding PHT entry
in advance, enabling correct predictions for subsequent branch
instructions fetched before instruction commit. Even in cases
where branch resolution occurs in the wrong execution path,
speculative PHT updates can be beneficial since the branch
conditions may match architecturally correct data.

To understand the design rationale of early pattern history
updates, we model a modern history-based branch predictor
(See Section VIII for more details). We evaluate two PHT
update policies: commit-time and resolution-time update. Fig-
ure 2 illustrates the performance comparison between these
two configurations. Note that in both cases, the GHR is
updated on prediction and restored for incorrect predictions
during resolution [18], [33]. As shown, resolution-time update
exhibits higher performance, surpassing the commit-time up-
date by an average of 8.5%. Achieving superior performance
in an already well-optimized microarchitectural component

❶ ❷

Fig. 4: Evolution of PHT entry from safe to IS-Unsafe and
finally PS-Unsafe for different pipeline stages of a branch.

like the branch predictor poses significant challenges [32],
[34]. Our study shows that speculative update of PHT brings
advantageous in terms of performance, which likely explains
why modern processors employ such a scheme [27].
Security Implications of Speculatively-updated BPU. Un-
fortunately, speculative updates of PHT introduce the PHT
counter encoding vulnerability (i.e., infer if the victim branch
is speculatively taken or not taken) [13], [27]. Specifically,
the attacker can observe a the direction of a specific victim
branch, whose outcome depends on a speculative secret (ex-
ample shown in Listing 1); and b the execution of a branch
in a specific path based on certain condition of a speculative
secret. As illustrated in Figure 3, attacks on these primitives
can be fundamentally classified as:
i) Leakage from PHT (Figure 3a): Leakage from PHT can
manifest in three steps [13], [27]: ❶ preset the PHT entry
(PHTt) to a pre-determined state; ❷ trigger victim’s execution
where a branch resolution updates PHTt according to a
secret value in the speculative domain; ❸ infer either specific
state change of PHTt ( a ) or if PHTt has been updated in
the speculative path ( b ) by executing a congruent branch
and timing its execution. Depending on execution latency of
congruent branch with a known outcome, PHTt is inferred.
ii) Leakage of GHR (Figure 3b): As GHR records the most
recent branch outcomes, leakage of GHR can lead to recovery
of the victim’s control flow [13]. Although the state of the
GHR cannot be directly observed, it determines which specific
PHT entry is used for prediction. The leakage of GHR
follows these steps: ❶ preset potential PHT entries (PHTx

and PHTy) and the GHR state; ❷ trigger victim execution,
where the update of GHR (and PHT) for branch1 depends
on a speculative secret; ❸ infer which PHT entry (PHTx

or PHTy) is changed by the subsequent branch (branch2),
thereby leaking the updated state of GHR caused by branch1.

In this paper, we aim to design secure speculatively-updated
BPU that offer same level of security as commit-time update

3
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Fig. 6: Runtime distribution of PHT entries updated by in-flight branch instructions
(i.e., potentially IS-Unsafe) during every CPU cycle of simulation, collected for a
contiguous period of 100M cycles.

predictor while maintaining performance advantage.

IV. THREAT MODEL

Our threat model focuses on the direction predictor-based
BPU side channels in the speculation domain (i.e., [13],
[27]). We assume an active attacker (similar to [35]) who
can manipulate the branch predictor state and interfere with
the victim’s execution. The attacker has the ability to initiate
victim execution and can be co-located on the same physical
core as the victim process. The attacker and victim processes
can run either in simultaneous multithreading (SMT) mode
or in a round-robin (RR) fashion. We assume that the branch
predictor speculatively updates PHT entries without restora-
tion. By exploiting the vulnerability described in Section III,
the attacker can launch transient execution attacks via BPU as
a transmitting medium [27]. Our approach focuses on cross-
domain attack scenarios and does not consider same-thread
attacks, such as malicious trojans injected into benign victim
applications [12]. Preventing same-thread attacks typically
involves careful validation of application code or relies solely
on trusted vendor-provided linked libraries. Protection against
speculative and non-speculative side channels originating from
other hardware components (e.g., cache and TLB [6], [24],
[28]) falls outside the scope of this work.

V. CHARACTERIZING PHT SAFE AND UNSAFE USAGE

In speculatively-updated BPUs, PHT updates due to reso-
lution of a conditional branch in the wrong path of execution
can propagate secrets in speculative domain. To quantify how
many PHT entries might potentially be perturbed at a certain
time of program execution, we run characterization experi-
ments on a set of benign programs and track speculatively-
updated PHT entries. We categorize these PHT entries into two
classes: i) Safe Entries: entries that have only been updated
by branches that are later committed (i.e., these entries have
not been impacted by any squashed instruction) and ii) Unsafe
Entries: entries updated by at least one squashed branch. We
further differentiate the Unsafe entries as In-speculation unsafe
(IS-Unsafe) and Post-speculation unsafe (PS-Unsafe). The IS-
Unsafe PHT entries are the ones that are updated by in-flight
resolved instructions (not yet squashed), while PHT entries
updated by branch instructions that are already squashed are
the PS-Unsafe entries. Figure 4 illustrates different states of
PHT entry, highlighting the difference between the two types

of unsafe PHT entries. When the branch is executed (resolved),
it updates a PHT entry and changes the PHT entry from safe
to IS-Unsafe (❶). Once the branch instruction is squashed,
the PHT entry transitions from IS-Unsafe to PS-Unsafe (❷).
An attacker can recover secrets while the PHT entry is in IS-
Unsafe state only in an SMT-enabled system. In contrast, an
attacker can recover secrets from PS-Unsafe PHT entry in both
SMT and non-SMT settings. We run representative regions
of several SPEC 2017 CPU benchmarks and log their PHT
entry update traces for continuous execution of 100 program
segments (each with 10M instructions). Figure 5 shows the
breakdown of PHT entries exercised and marked as safe or
unsafe (averaged over all segments for each program). We ob-
serve that only a very small number of PHT entries are tagged
as unsafe (on average 202) and can be a potential source of
leakage in the speculative domain. Note that PHT typically has
tens of thousands of entries (e.g., 16K in Intel processors [2]).
Such observation confirms that branch predictors are generally
highly accurate after training period. As a result, only a very
small percentage of conditional branches resolved in the wrong
path of execution will alter PHT states.

To understand IS-Unsafe, we count the total number of PHT
entries corresponding to branch instructions executed (but not
squashed or not in the head of ROB) cycle by cycle. At
resolution time, since the processor can not determine if a
branch instruction will be committed, strictly identifying IS-
Unsafe entries are not possible. Hence we consider all in-flight
resolved branch instructions as potentially IS-Unsafe. Figure 6
shows the runtime distribution of potentially IS-Unsafe entries.
For most of the cycles, fewer than eight PHT entries are
considered potentially IS-Unsafe. This observation indicates
that for almost the entire speculation window, a small number
PHT entries are being updated by in-flight branches. Note that
while disabling SMT can prevent IS-Unsafe leakage, such a
mechanism cannot prevent PS-Unsafe based leakage across
processes running in the same physical core.

VI. BEKNIGHT DESIGN FRAMEWORK

In this section, we present our BeKnight design that prevents
both IS-Unsafe and PS-Unsafe leakage in branch predictors.

A. Securing Leakage via IS-Unsafe and PS-Unsafe Entries
To thwart all types of BPU-based transient execution at-

tacks, the underlying security mechanism of BeKnight book-
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keeps the ownership of unsafe PHT entries (both IS-Unsafe
and PS-Unsafe) at any point of execution. To ensure security,
the unsafe PHT entries that belong to one thread context
cannot be used to make predictions on a different context
using the non-architectural states (i.e., changes to PHT by
instructions that are either transient or not committed yet),
while the same domain prediction is allowed to retain the
performance gain due to speculative updates. However, ex-
tending the PHT with metadata to track unsafe entries can be
overly expensive. For example, considering a PHT with 2-bit
counters, storing a 12-bit thread id along with a single-bit flag
(to indicate if unsafe) increases the storage of PHT by 85×.
This high-overhead mechanism still can not rollback to the
architecturally correct state of PHT. Our secure BPU design
is based on the observations (Section V) that protecting only
unsafe PHT entries can annul speculative leakage, and more
importantly the number of such entries are deemed small and
can be efficiently tracked in a small buffer.

Figure 7 illustrates a high-level overview of BeKnight.
At the core of our design is the integration of a small-size
buffer that is utilized to track and audit the usage of unsafe
PHT entries. We term such buffer structure as speculative
pattern lookaside buffer (SPLB). Essentially, SPLB manifests
similarly as translation lookaside buffer (TLB) that tracks
the ownership of pages to processes. During the prediction
of a branch instruction, BeKnight leverages SPLB to detect
cross-domain accesses to unsafe entries. In case such access
occurs, the proposed mechanism ensures that the prediction
is provided based on the architecturally correct state, thus
preventing prediction decisions made to be influenced by
speculatively accessed data. Different from the speculative
PHT update mechanism in modern processors, BeKnight
works by keeping the PHT updated using only committed
instructions, ensuring that an architecturally correct state is
always maintained in PHT. BeKnight tracks the speculative
PHT updates separately in SPLB and uses that for prediction
only when same-domain access is detected. BeKnight exerts
the fact that cross-domain accesses to the same PHT entry
are effectively close to randomization of that entry since
the actual behavior of branches across different domains are
typically not correlated with each other. And hence, reading
an architecturally correct counter ensures that there is no

Ways

Sets
Tag (PHT Offset) Thread ID Spec. Ctr.

SPLB

{n+1}-bit12-biti-bit 

SPLB entry

Fig. 8: Organization of SPLB. For n-bit PHT, Speculative
counter (S) is {n+1}-bit. Tag field depends on the actual
size of PHT and # of sets in SPLB (i.e., if # of PHT entries
is P and # of sets is S, then # of PHT offset bits i = P

S ).

speculative interference on the PHT states.

B. BeKnight Design Details

The purpose of SPLB is to track the unsafe PHT entries and
their ownership (e.g., the thread context that has transiently
updated the PHT). To achieve that goal, each buffer entry
incorporates three fields: 1) PHT offset (pht_off) that it
tracks, 2) thread ID (tid) for the instruction allocating
the entry, and 3) {n+1}-bit signed Speculative counter (S)
indicating the in-flight and transient updates to this PHT
entry. n is the number of bits in PHT counter. An {n+1}-
bit signed counter is large enough to hold the necessary
transient updates to the PHT entry since an overflow in S will
saturate the actual PHT counter. This buffer is arranged in sets
and ways (similar to TLBs) to facilitate lookup and update.
Figure 8 illustrates detailed structure of SPLB. Specifically,
SPLB works in parallel with the rest of the BPU. Upon making
a direction prediction, a lookup in SPLB is performed by
supplying pht_off and tid of the requesting domain. An
SPLB lookup can result in one of three possible outcomes:
i) buffer hit: where both pht_off and tid match with an
existing entry in the buffer, meaning the S of this PHT is safe,
ii) domain conflict: the pht_off matches with an existing
entry but tid mismatches (i.e., a different thread context
attempts to probe this entry), meaning the S of this PHT is
unsafe, and only the architectural state maintained in PHT
must be used, and iii) buffer miss: pht_off does not match
with any existing entry. In case of buffer miss or domain
conflict, the corresponding PHT entry is used for prediction
since S is either not present or unsafe. However, in the case
of a buffer hit, S can be safely used to make prediction.
Interactions of BeKnight with other BPU components.
Now we describe the detailed operations and interactions of
BeKnight in different stages of pipeline. BeKnight has explicit
interactions in several different pipeline stages: 1) ensuring
prediction using safe PHT entries during the fetch stage, 2)
facilitating speculative update of the PHT and tracking IS-
Unsafe at the end of execute stage and 3) marking safe/PS-
Unsafe during the commit stage.
Fetch stage: At the fetch stage, by default, the BPU provides
a prediction of the direction for a conditional branch by
accessing the corresponding PHT entry. Since the PHT in
BeKnight is only updated by committed instructions, it is safe
from any speculative leakage. BeKnight additionally performs
an SPLB lookup to determine the status of this specific PHT
entry in parallel (❶). If the lookup returns buffer miss or
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Processor 4-core, SMT, Out-of-order, x86, 3.0GHz

Pipeline 14-stage, 8-issue, 192-entry ROB,
32-entry Load/Store Queue

Cache 64KB 4-way L1 I-/D-cache (Private),
16MB 16-way L2 cache (Shared)

Memory 8GB, DDR3-based 1600MHz
Branch predictor unit 16K PHT, 3-bit saturating counter, 64-bit GHR

TABLE I: Architecture configuration parameters.

Multi-program Workload

mix-1: xz-deepsjeng, mix-2: mcf-gcc,
mix-3: xlbmk-perlbench, mix-4: omnetpp-gcc,
mix-5: mcf-xlbmk, mix-6: xz-omnetpp,
mix-7: gcc-xlbmk, mix-8: omnetpp-xlbmk,
mix-9: perlbench-deepsjeng, mix-10: xlbmk-xz

TABLE II: List of multi-programmed workload.

domain conflict, only the actual PHT counter is used to make
prediction (❷). However, in case of SPLB hit (which rep-
resents same-domain access to an unsafe counter), BeKnight
combines the corresponding S with the actual PHT counter (❸)
to provide prediction based on speculative updates in PHT.
Execute stage: At the end of the execute stage, the branch
outcome is resolved and the BPU performs a speculative
update of the PHT based on the actual direction (regardless of
whether it will be committed or squashed). Instead of directly
updating the PHT (❹), i) for SPLB miss, an SPLB entry is
allocated and S is updated based on the resolved outcome; ii)
for domain conflict, the S is cleared (reset to 0) first to discard
any speculative state and then both tid and S is updated; and
finally iii) for SPLB hit, the S is updated based on branch
resolution to keep track of speculative update.
Commit stage: At the commit stage (❺), the PHT counter
is updated to maintain architecturally correct PHT state for
correct path execution. In addition, in case of SPLB hit, S
also has to be updated in the opposite direction of branch
direction to maintain only the speculative updates in SPLB.
For SPLB miss or domain conflict, this does not have to be
done since speculative states of this PHT are not tracked.

If SPLB allocation during execute stage requires eviction of
an SPLB entry, then one entry from the corresponding SPLB
set is randomly selected for eviction and the S is discarded
for that entry since it is no longer tracked. BeKnight uses
random replacement for the SPLB so that no information can
be inferred from the replacement policy. Moreover, since only
architecturally updated PHT states are visible from a different
domain, an attacker cannot determine if a PHT entry is tracked
by SPLB or not. Finally, SPLB operations (e.g., lookup,
update, eviction) are completed within the same cycle as the
regular BPU access, hence it does not introduce additional
variant timing sources. Our scheme leverages the idea that
PHT itself will contain only architecturally correct states and
the SPLB tracks the speculative updates, allowing us to benefit
from them for same-domain access.

VII. EXPERIMENTAL SETUP

Architecture Configuration. We implement a prototype of
the BeKnight framework in gem5 [36] with full system sim-
ulations. We boot a Ubuntu 18.04 based system using kernel
version 4.19.83. We model an X86-based processor with a

Non-SMT SMT
Direction Execution Direction Execution

PHT Leakage ✓ ✓ ✓ ✓
GHR Leakage ✓ ✓ ✓ ✓

TABLE III: BeKnight protection in spec.-updated BPU.
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Fig. 9: Execution latency of ba (cycles) corresponding to
actual direction (based on speculatively accessed secret) of
bv executed in wrong path of speculation. The circled and
crossed points denote correct and incorrect secret guesses.

pipeline configuration close to Intel Skylake [37]. We model
a history-based branch predictor using the details revealed
in the BPU design of recent Intel processors [2], [13], [27].
Table I lists the detailed architecture configuration. As default
configuration, we use a 4-way associative 128-entry SPLB.

Workload Configurations. We build a representative set of
workloads including 14 single-program and 10 multi-program
workloads from the SPEC CPU 2017 benchmark suite with
reference inputs. Table II details the workload configurations.
For the single-program workloads, we skip the first 6 billion
instructions after program execution, then perform 1 billion in-
structions simulation in out-of-order simulation. For the multi-
program workloads, we use both round-robin (RR) and SMT
configuration. In the RR configuration, we simulate 1 billion
instructions in the region of interest for both benchmarks
combined. For SMT configuration, we simulate at least 1
billion instructions for each of the workloads individually.

Evaluation Methodology. To evaluate BeKnight, we con-
figure two baseline schemes with different security implica-
tions, including i) Commit-time update, CT: secure baseline
scheme which performs PHT updates at only commit time,
ii) Resolution-time update without restore, RT-NR: this is
employed in commercial processors where PHT update is
performed at branch resolution time without restoration for
squashed branch executions. Note that this configuration is
vulnerable to exploitation discussed in Section III. Finally,
both configurations have speculative update of GHR.
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Fig. 10: Correlation of the attacker trace from BeKnight with
traces from secure CT and traces from unsecure RT-NR.
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Fig. 11: Comparison of system performance (normalized to CT) for different schemes using history-based predictor.

VIII. EVALUATION

A. Security Analysis of BeKnight

We first discuss the security guarantees offered by BeKnight
with respect to the attack anatomy (shown in Table III). As a
different domain cannot observe the speculative state changes
(which are stored in SPLB and not from another domain),
direction-based PHT leakage is prevented. Meanwhile, since
attacker only observes architectural states of PHT entries,
it cannot infer whether a PHT entry has been speculatively
updated or not, hence annulling execution based PHT leak-
age. Besides mitigating non-SMT attacks, BeKnight tracks
speculative PHT updates from branch resolution, regardless
of whether they will be committed or squashed. This ensures
that IS-Unsafe entries are tracked in SPLB, preventing SMT
attacks. Finally, GHR leakage inherently relies on observation
through PHT, by ensuring no impact of speculation is visible
to attacker through PHT, the GHR leakage is also defeated.

To verify the effectiveness of BeKnight in preventing BPU
speculation leakage, we conduct a security analysis using a
proof-of-concept cross-domain attack [13]. In this attack sce-
nario, a victim executes a branch (bv) whose outcome depends
on a speculative secret accessed in the wrong execution path
(Listing 1). The attacker attempts to infer the speculative
secret by observing the prediction made for its own congruent
branch (ba). The results of the attack analysis are shown in
Figure 9. Under the insecure RT-NR scheme (used in modern
processors), the attacker successfully recovers the secret by
observing the execution latency of ba, which perfectly matches
the corresponding secret values (Figure 9a). However, when
BeKnight is enabled, the attacker’s attempts to probe the
PHT using bv to infer the speculative update are thwarted
by the domain conflict detection mechanism (Figure 9b).
As a result, BeKnight obfuscates the prediction behavior
of ba, rendering it independent of the victim’s speculative
secret. The attacker’s observations from the branch predictor
become random, making it impossible to recover any secret
information. Furthermore, correlation analysis on attack traces
obtained from BeKnight against traces from CT and RT-NR
confirm BeKnight offers same PHT states for cross-domain
accesses as secure CT scheme (Figure 10).

B. Performance Evaluation

Mispredictions Per Kilo Instructions. MPKI (i.e., mispredic-
tions per kilo instructions) is the critical metric for evaluating
branch predictor design. Our results show that the CT scheme

pe
rlb gc

c
bw

av
s

m
cf

ca
ct

u
lb

m
om

nt
p

wr
f

xl
bm

k
de

ps
jg

le
el

a
na

b
ro

m
s xz

m
ix

-1
m

ix
-2

m
ix

-3
m

ix
-4

m
ix

-5
m

ix
-6

m
ix

-7
m

ix
-8

m
ix

-9
m

ix
-1

0
av

gS
av

gM

0%
10%
20%
30%
40%
50%

Ch
ar

ac
te

riz
at

io
n 

of
SP

LB
 S

cr
am

bl
in

g SPLB Buffer Evict SPLB Domain Conflict

0

5

10

SP
LB

 D
PK

I

Fig. 12: Breakdown of BeKnight SPLB discard per squash of
resolved branches and DPKI (discard per kilo instructions).

has the highest MPKI at 17.5 on average over all workloads.
In contrast, the other two schemes utilizing speculative update
of the PHT at resolution time achieve lower MPKI of 12.6
on BeKnight and 11.9 on RT-R. Additionally, we observe that
single-program workloads generally have lower MPKI (on av-
erage, 11.4 to 8.7 across all schemes) whereas multi-program
workloads show considerably higher MPKI (on average, 23.6
to 15 across all schemes). We note that this is because of PHT
conflicts–PHT entry trained in one domain does not help the
prediction of a congruent branch in another domain.

Application Performance of BeKnight Schemes. Figure 11a
shows the overall system performance (i.e., instructions per
cycle) in various schemes. Similar to the MPKI, it is evident
that speculative update of the PHT based on resolved branch
has superior performance over commit-time update. Specifi-
cally, RT-NR has 8.5% and 6.8% performance gain over CT
for single- and multi-programmed workloads respectively. In
contrast, with the SPLB-based speculative leakage prevention
mechanism, BeKnight can achieve 8.1% performance gain
over CT for single threaded workloads and 6.1% for multi-
programmed workloads. Moreover, BeKnight schemes per-
form very close to best-performing RT-NR with a minimal
0.3% and 0.8% performance drop in single- and multi-program
workloads respectively. Figure 11b shows the performance
of the schemes in SMT setup. Note that with the multi-
program workloads in SMT, it is expected to have higher SPLB
conflicts. Overall, BeKnight has 6% IPC improvement over
commit-time and only 0.8% overhead on top of RT-NR.

Impact of Unsafe Tracking. We quantitatively analyze the
performance of SPLB and its impact on system performance.
Particularly, there are two cases when SPLB can directly influ-
ence the performance: 1) SPLB eviction for an unsafe entry be-
cause of limited capacity, and 2) SPLB domain conflict when
an unsafe entry tracked in SPLB is accessed from a different
domain (i.e., another thread). In both cases, BeKnight must
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Fig. 13: Characterization of SPLB in SMT workloads.

discard the S corresponding to the SPLB entry to eliminate
the speculative state changes. Figure 12 shows the percentage
of SPLB discards (normalized to number of resolved but
squashed branches). We can see that single-program workloads
have lower SPLB discard rate (2.6%) compared to that of RR-
based multi-program workloads (6.1%). Additionally, there is
no domain conflict in the single-program workloads (as all
accesses are coming from the same domain). In contrast, RR-
based multi-program workloads show 1% domain conflict and
the rest (5.3%) due to eviction. The SPLB discard Per Kilo
Instruction (SPLB DPKI) shows a moderate number of 0.75
and 1.36 SPLB DPKI. Compared to RR-based workloads,
SMT-based workloads (Figure 13) have a slightly higher PHT
discard rate due to increased domain conflicts (1.5%).

C. Hardware Overhead Analysis

We use CACTI 7.5 [38] to model SPLB to investigate its
hardware overhead. Table IV lists the access latency, dynamic
energy per access, area, and storage overhead for different
SPLB sizes. Note that SPLB is always set to be 4-way set
associative. With the default SPLB size of 128, PHT offset
requires 9 bits (for a 16K PHT) and the Speculative counter
requires 4-bit. Along with 12-bit tid, its storage overhead
is 432 bytes. The access latency for SPLB is well below
the single cycle latency of modern processors. Therefore, its
lookup/update procedures do not add any additional delay on
the branch prediction path. Synthesized using 22nm process
technology, the area overhead is insignificant compared to
overall CPU die area (e.g., 160mm2 die area of Ivy Bridge i7
processor [39]). We additionally synthesize the branch predic-
tor in CT and BeKnight using Synopsis Design Compiler with
FreePDK45 standard library [40] and observe that BeKnight
requires minimal 6.4mW additional dynamic power for one
prediction, update, commit cycle of a branch.

IX. RELATED WORKS

Microarchitectural attacks, specifically transient execution
attacks, present significant security risks to computing sys-
tems. These attacks exploit performance optimizations in
modern processors to leak speculatively accessed secrets
through side channels. Existing transient execution attacks
often rely on BPU to trigger speculation [1], [9], [11] and
utilize BPU [9], [13], [27], caches [1], [12] and other compo-
nents [11] for secret transmission. Hardware-specific defen-
sive techniques have been proposed to counteract transient
execution attacks, with a focus on hiding or cleaning the
speculation footprint on caches [41]–[43]. Oblivious specu-
lation techniques [18]–[21], [43] have also shown promise in

Size Latency (ns) Energy (nJ) Area (mm2) Storage (B)

64 0.067 0.0002 0.0003 184
128 0.071 0.0002 0.0004 352
256 0.085 0.0003 0.0006 672
512 0.087 0.0004 0.0013 1344

TABLE IV: Hardware and operational (latency and dynamic
energy) overhead of BeKnight framework.

mitigating speculation side channels by delaying the impact
of speculative execution on microarchitectural components.
However, investigating hardware-specific defenses is crucial to
leverage the performance characteristics of individual microar-
chitecture components. This work introduces novel schemes
that harness the positive performance impact of early BPU
pattern history updates while maintaining security.

Architecture-level techniques for defending against microar-
chitectural side channels typically employ resource isolation
and obfuscation to prevent the observation of microarchi-
tectural states [44]–[48]. Specifically, existing works have
explored secure branch predictors to mitigate BPU as a general
source of side channels [14]–[17], [49], [50]. Some approaches
enforce isolation of branch predictor buffer structures among
security contexts [14], leverage obfuscation through random-
ization and content-encoding of BPU indexing [16], or imple-
ment strict hardware isolation for critical BPU structures [17],
[49]. While these methods can mitigate BPU leakage in both
speculative and non-speculative domains, they face scalability
issues and performance impacts due to the need for separate
BPU structure copies per context and runtime state purging.
BeKnight, effectively prevents BPU leakage in the speculative
domain with minimal overhead by providing efficient security
domain tracking and leakage-free restoration.

X. CONCLUSION

In this paper, we present BeKnight, a novel protection
framework that secures speculatively-updated branch predic-
tors against information leakage in the speculation domain.
BeKnight is designed with the aim to retrain performance
benefits of early BPU state (i.e., pattern history) updates while
ensuring its security in the speculation domain. BeKnight
employs a very small pattern lookaside buffer to track the
ownership of unsafe PHT entries among many security do-
mains. By keeping the speculative updates separate in SPLB,
BeKnight maintains speculative predictor update behavior
for same-domain while ensuring predictions are made using
architecturally correct states for cross-domain access. Our
evaluation results show that BeKnight can completely defeat
the speculative side channel on BPU while performing almost
the same as the insecure high-performance baseline.
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