D-Shield: Enabling Processor-side Encryption and

Integrity Verification for Secure NVMe Drives

Md Hafizul Islam Chowdhuryy Myoungsoo Jung Fan Yao Amro Awad
University of Central Florida KAIST University of Central Florida NC State University

Presenter: Md Hafizul Islam Chowdhuryy
Computer Architecture and Systems Research Lab, University of Central Florida

29th IEEE International Symposium on High-Performance Computer Architecture (HPCA-29)
February 25t — March 1st, 2023

Hardware Security Threats to System

* Data is the main target of exploitation

Memory Controller)—I_ LI

——) ———
: PCle Interface i

Source: iinfosecinstitute.com Eg

Secure Memory Architecture

@

LILAL
-
oo
DOL
mm,...c
(0]
Q
C N S S NS SN S SN SN S, B S, .

Processor Chip

! Last LeveI CachellZIZd

[Memory Controller

Limit trust boundary to the processor chip
Protect confidentiality and integrity of off-chip data

/
e\ —r Mainly focus on memory security

[Data] Controller

Decrypti

-? N N N N .

Storage security provided through software or disk itself

No processor-side support for fast storage security @

Need for Architectural Support for Storage
SecbitM— o

This work

Architectural framework for processor-side data protection
for fast storage devices.

d

Desigh Objectives

Processor Chip - Memory -
L ___lastlevelCache _____! Metadata
Memory Controller >—<
[Crypto Engine]
I Data
[Storage Security Engine]
—

] \
7/ \ St tadata 1/0 . .
Storage data /O , - I - Storage metaaata /i Memory Securlty Domain

NVMe Storage -

[Data I Metadata] Controller

Storage Security Domain

Objective 1: processor-side support (CPU as root of trust)

Objective 2: transparent to storage devices and NVMe protocols

Challenges

Processor Chip Memory -
ST T . .
[¥
|
I INVMe Driver |
i I/0 Req |E
1 “ 1
__Kerrel,
- NVMe Storage m
[Dat

C1: Intricate SW/HW interactions = excessive software intervention can be expensive

C2: Asynchronous control/data flow = requires hardware support to identify and map DMA requests

C3: Metadata I/O overheads = efficient metadata management tailored for storage I/O characteristics

Basic D-Shield Design

, Processor Chip — Memory
- ——Memory Controller~ r ™
DMA Interception Engine Memory
Region Table R/W Queue Metadata
I
== EEEE > <
. Storage 5 Data
Metadata E

Con ———> Crypto
Logic Buffer Engine @ @
NVMe Data Queue
===
T
(e) || [BE
[Storage Metadata Caches}— Metadata
Caches Metadata Queue
- y,

_ J

NVMe-optimized Security Metadata

e Storage metadata are stored separately in NVMe disks

* Three types of security metadata = similar to Secure Memory

Encryption Key (On-Chip) JA| Decrypted Data [ed for each data access > store them together to reduce metadata

/O operd fmmmmmmmmmmmm oo \
ROOT (On-Chip) I

Engine
I T T II T T I

Intermediate Nodes

Major Counter | Minor Counters Encrypted Data (Stored in Storage) T
—) [HAsH] (HAsH | ([HASH] [HASH]I TS~
Counter-mode Encryption T S o
r_"_-q_—__—__—_:‘—{_—__—___:_—_ STt kT T _—_:_’_‘ ~ ~
Q000 DPU9 IE0C DDUE: - - N
el e e e ek e e i b
T L1 L1 L - == ..

I] 1 1
Controller[I : Data !‘Counter MAC D/IerkleTree]

MM - - e e mm e m === == =TT T T
NVMe Storage

[NVMe Storage '

[Controller [Data][CMAC Merkle Tree]

D-Shield Operation (Read)

A
NVMe Storage Processor Chip To kernel driver Memory
T Viemory Controller

NV M e DMA Interception Engine’ e

C1: Storage security metadata maintenance without “Intricate SW/HW interactions”
YL T N N /e i . S— 71~ N |

C2: Compatibility with NVMe “Asynchronous control/data flow”
| [DATAII]l | | ewsdimm L | 8 | | |lINvMe Data Queuelll

C3: NVMe-optimized metadata design to reduce “Metadata I/O overheads”

it=
II. —— — CaCheS I. Metadata Queue

ci CMAC - Read CMAC from NVMe
=> Verify Counter integrity using Merkle Tree

ﬂ

D-Shield-Hyb: Cross Domain Access Optimization

Moving data between protection domains (i.e., memory and storage) can be expensive
Additional utilization of the cryptographic engine
Prolonged NVMe data path

Re-encryption only required if the actual data changes (i.e.,
processor write updating the data)

D-Shield-Hyb: Cross Domain Access Optimization

|:| Memory Protection Domain

Mem. Controller

Plainte

xt data (64B)
A

I\ﬁLI’éBf-‘

Storage

Crypto
/g Engine
Nn

L.

e

(LPID)

Major Counter

:l Storage Protection Domain

(LPID)

Storg Major Counter

Minor Counters

Domain Vector

LPID| Minor Counters |\@111 Memory
i p
Protection Domain Vector | .-~
(1 XEvl
I I I I I
Vier. C:)ntr0|||\c/||“nc|)r Clour?tell‘ls A (643)é
emory counter Glook (Q{@inal)
Engine _
O ||628)
| 11l i 1 4 . , 1 a/nq 14 1 |
! o Protection Memory

e

\'

| | |
ETMOTY PU 10 SLOTdEE PUr= ===

Memory counter bIock\sll\)n-
e

Shield-Hyb)

* Bookkeep the ownership of
logic blocks in memory

* Track the security domain for
transferred data block

* Performs only one iteration of
decryption/encryption on-
demand

Processor write to N @

D-Shield-Pro: In-Memory Caching

* Storage metadata cache misses
have high overheads

* Miss in CMAC block is more
expensive since it may require
additional metadata access
(i.e., for Merkle tree blocks)

* Idea: In-memory CMAC block
caching to increase the CMAC

block hit ratio

- Storage —

NVMe
Controller

— Processor Chip

DMA

Interception

©),

Engine
Load from storage

Integrity verified using storage MT

Data

Storage
Metadata

Caches

- Memory -
4 ™
Memory
Metadata
. y,

4)
Data

)

In-memory
CMAC

Cache

@ HIT: Load from memory
Integrity verified using memory MT

Experimental Setup

+* Simulator: Gem5-based full-system simulation (SimpleSSD)

«* OS: Ubuntu 18.04; Kernel: Linux 4.9 Hardware Configurations
Processor 4-core, 3.0 GHz in-order, x86
L1 I/D-cache Private, 64KB, 4-way
L2 cache Shared, 16 MB, 16-way
Main memory DDR4 based 16GB
Cryptographic Engine

Encryption/Hash operation (64B) | 40 cycles
— N

DMA Interception Engine I

- mm oEm oy,

Metadata cache 256KB 8-way each

\H_ash operation (512B) 320 cycles R
NVMe Disk

Capacity 512GB

Cell model Z-NAND based MLC PCM

Avg. random access latency(pS) READ: 10.5, WRITE: 9

Evaluation Methodology

** Workloads:

* 1/0 intensive applications: Flexible /0
* Server-class applications: database, document storage system
* Graph algorithms: YCSB suite (twitter follow network)

¢ Baselines (All variants include secure memory):

= |nsecure: Default NVMe storage system without security mechanism
= Enc: dm-crypt-based encryption for NVMe storage system
= Enc+Int: dm-crypt with dm-integrity for NVMe disk encryption and integrity checking

d

Evaluations: D-Shield Performance

25 2,5 25 58 69 7,9 51861861'4 38 48 4,8 3,17 31731 4,10 5,10 5,10¥2,9 3,9 3,9

A

128K 256K 512K 128K 256K 512K 128K 256K 512K J128K 256K 512K 128K 256K 512K 128K 256K 512K J 128K 256K 512K §J128K 256K 512K

Normalized Execution Time
[EEY

Rand-RW - Avg-Rand
mEnc mEnc+int D-Shield m D-Shield-Hyb m D-Shield-Pro

of transactions (from left to right): 128K, 256K, 512K

Runtime (normalized to Insecure) of FIO benchmark
Sequential workloads: 4.4% overhead compared to Insecure (Avg)

4.1x less compared to Enc, 10x less compared to Enc+int

Random workloads: 39% overhead compared to Insecure (Avg)
2.05x less compared to Enc, 7x less compared to Enc+Int

Evaluations: D-Shield Performance

1
- 09
>
a 0.8
& 0.7
206
=
< 05
804
©
e 0.3
6 0.2
o T AR AR |

o N v

RWm Rh Ro RWm Rh Ro RWm Rh Ro RWm Rh Ro RWm Rh Ro RWm Rh Ro
MongoDB PostgreSQL RocksDB Accumulo Redis Average

mEnc mEnc+int D-Shield m D-Shield-Hyb m D-Shield-Pro

Throughput of D-Shield on real-world server applications

D-Shield can maintain 94% (Avg) throughput compared to Insecure
24% higher compared to Enc and 49% higher compared to Enc+Int

Evaluations: Hardware Overhead

NVMe storage overhead: 3.14% for Security Metadata

On-chip storage overhead: 2x256KB for Storage Metadata Caches

552 Bytes for Region Table

In-memory storage: 128MB for In-memory Cache (D-Shield-Pro only)

D-Shield on-chip logic:

* Implemented using Verilog Module
e Synthesized with Synopsis DC with 45nm
Logic Block Buffer 0.23
Security Control Logic 0.08

d

Conclusion

* Existing storage protection offers limited security and impose high overhead
* D-Shield offers architectural framework for processor-side storage security
* D-Shield-Hybrid optimizes cross-domain data transfer substantially
* D-Shield-Pro reduces metadata overheads through in-memory caching
* Modest performance overheads in real-world workloads
 While providing state-of-the-art data security

d

More on Paper

Read CMAC MT Data authentication and OTP Read
* Architectural design space explorations i i -

Device | CMAC Counter| Data |Queueto| | |

« Additional details on D-Shield designs: ko (date) foad | M7 OR Pverty ldecryptmem et Irime
Int t Counter integrity Writ
« Complete R/W paths CoaMe (Multiple /0) co Ms!
e Metadata arra ngements and maintenance (a) DMA Interception Engine Events for Read operation
* D-Shield overhead analysis: Write CMAC MT pata aythentication and OTP Write
o beJLgln miss m'SS___ge_n_eza_ti_og_(gv’erlapped) finish
* Addltlonal |/O overheads _|Data from CMAC‘ MT load(s) Counter| Data | Device | |,
° Logic and Storage overheads mem. ctrl| load edtts verify |encrypt|l/O (data)l [Time
. o o . . |nter?cept C‘Ounte.rintegri:cy ertetIVISI
e Sensitivity analysis of D-Shield schemes data (Multiple /0) co

NVMe Read/Write path in D-Shield

 And more...
100% Memory PD SSD PD PD Vector
g-o === D-Shield/D-Shield-Hyb == «h==' D-Shield-Pro _ o 1 1-;
o 64-bit «—64 X 6-bit —>€—64-bit— (- - - - —— - -
© £ 9 - inor Counters /PL orW ZN\N
E 5 50% —~ LPID | M!no‘r C‘ou‘nte‘rs _(x64) \Plz\/_ec—toﬁ T——— §é§~$
e LT T e — =T, Main Memory Counter Layout RN
"ﬂ”
O% I I I I I I 1 o o
Seq-R Seq-W Seg-RW Rand-R Rand-W Rand-RW Avg. D-Shield-Hybrid metadata storage

D-Shield 1/0 overheads

Thanks! Questions?

Md Hafizul Islam Chowdhuryy

CASR Lab (https://casr.ece.ucf.edu)
Email: reyad@knights.ucf.edu
Email: fan.yao@knights.ucf.edu

20

https://casr.ece.ucf.edu/
mailto:reyad@knights.ucf.edu
mailto:fan.yao@ucf.edu

