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• Data is the main target of exploitation
• Multiple attack vectors are possible for off-chip data

Hardware Security Threats to System

2

Last Level Cache

Processor Chip… Memory

Data
DDR

PCIe Interface

Memory Controller

Data spoofing attacks

Bus snooping attack

Rowhammer attack

Cold boot attack
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Memory

Secure Memory Architecture
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Limit trust boundary to the processor chip
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Mainly focus on memory security

Storage security provided through software or disk itself
No processor-side support for fast storage security



Need for Architectural Support for Storage 
Security
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• Pitfalls of existing solutions:
• Self-encryption disks: encrypts data in the storage itself 

• Do not protect physical attacks (i.e., bus snooping)
• Software-based disk encryption and integrity checking?
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SW solution has more than 16x slowdown1

1. Performed on Intel i7-9700K with Samsung 970 (NVMe)

• Emerging ultra-fast storage devices will further increase the bottleneck
• Microseconds range access latency (e.g., Intel Optane SSD)

This work

Architectural framework for processor-side data protection
for fast storage devices.



Design Objectives
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Objective 1: processor-side support (CPU as root of trust)

Objective 2: transparent to storage devices and NVMe protocols



Challenges
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C2: Asynchronous control/data flow à requires hardware support to identify and map DMA requests

C3: Metadata I/O overheads à efficient metadata management tailored for storage I/O characteristics
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NVMe-optimized Security Metadata
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• Storage metadata are stored separately in NVMe disks

• Three types of security metadata à similar to Secure Memory

• Counter and MAC are required for each data access à store them together to reduce metadata 
I/O operations (CMAC)
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D-Shield Operation (Read)
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C1: Storage security metadata maintenance without “Intricate SW/HW interactions”

C2: Compatibility with NVMe “Asynchronous control/data flow”

C3: NVMe-optimized metadata design to reduce “Metadata I/O overheads”



Cross-domain data transfer: 
From Storage Domain
To Memory Domain

D-Shield-Hyb: Cross Domain Access Optimization
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• Basic D-Shield provides proper off-chip data security with standalone 
protection for memory and storage
• Re-encryption of data is needed as it transfers between domains (i.e., 

between memory and storage)
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Moving data between protection domains (i.e., memory and storage) can be expensive
Additional utilization of the cryptographic engine

Prolonged NVMe data path 

Re-encryption only required if the actual data changes (i.e., 
processor write updating the data)
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• Bookkeep the ownership of 
logic blocks in memory
• Track the security domain for 

transferred data block
• Performs only one iteration of 

decryption/encryption on-
demand
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D-Shield-Pro: In-Memory Caching
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• Storage metadata cache misses 
have high overheads
• Miss in CMAC block is more 

expensive since it may require 
additional metadata access 
(i.e., for Merkle tree blocks)
• Idea: In-memory CMAC block 

caching to increase the CMAC 
block hit ratio
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Experimental Setup
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Hardware Configurations

Processor 4-core, 3.0 GHz in-order, x86

L1 I/D-cache Private, 64KB, 4-way

L2 cache Shared, 16MB, 16-way

Main memory DDR4 based 16GB

Cryptographic Engine

Encryption/Hash operation (64B) 40 cycles

DMA Interception Engine

Metadata cache 256KB 8-way each

Hash operation (512B) 320 cycles

NVMe Disk

Capacity 512GB

Cell model Z-NAND based MLC PCM 

Avg. random access latency(μS) READ: 10.5, WRITE: 9

v Simulator: Gem5-based full-system simulation (SimpleSSD) 

v OS: Ubuntu 18.04; Kernel: Linux 4.9



Evaluation Methodology
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v Workloads: 
• I/O intensive applications: Flexible I/O
• Server-class applications: database, document storage system
• Graph algorithms: YCSB suite (twitter follow network)

v Baselines (All variants include secure memory):
§ Insecure: Default NVMe storage system without security mechanism
§ Enc: dm-crypt-based encryption for NVMe storage system
§ Enc+Int: dm-crypt with dm-integrity for NVMe disk encryption and integrity checking
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Evaluations: D-Shield Performance
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Runtime (normalized to Insecure) of FIO benchmark
# of transactions (from left to right): 128K, 256K, 512K

Sequential workloads: 4.4% overhead compared to Insecure (Avg)
4.1x less compared to Enc, 10x less compared to Enc+Int

Random workloads: 39% overhead compared to Insecure (Avg)
2.05x less compared to Enc, 7x less compared to Enc+Int
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Evaluations: D-Shield Performance
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Throughput of D-Shield on real-world server applications

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

RWm Rh Ro RWm Rh Ro RWm Rh Ro RWm Rh Ro RWm Rh Ro RWm Rh Ro

MongoDB PostgreSQL RocksDB Accumulo Redis Average

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Enc Enc+Int D-Shield D-Shield-Hyb D-Shield-Pro

D-Shield can maintain 94% (Avg) throughput compared to Insecure
24% higher compared to Enc and 49% higher compared to Enc+Int



Evaluations: Hardware Overhead
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• NVMe storage overhead: 3.14% for Security Metadata

• On-chip storage overhead: 2x256KB for Storage Metadata Caches

552 Bytes for Region Table

• In-memory storage: 128MB for In-memory Cache (D-Shield-Pro only)

• D-Shield on-chip logic:
• Implemented using Verilog
• Synthesized with Synopsis DC with 45nm

Module Area
(mm2)

Logic Block Buffer 0.23

Security Control Logic 0.08



Conclusion

18

• Existing storage protection offers limited security and impose high overhead
• D-Shield offers architectural framework for processor-side storage security
• D-Shield-Hybrid optimizes cross-domain data transfer substantially
• D-Shield-Pro reduces metadata overheads through in-memory caching
• Modest performance overheads in real-world workloads
• While providing state-of-the-art data security



More on Paper
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• Architectural design space explorations
• Additional details on D-Shield designs:

• Complete R/W paths
• Metadata arrangements and maintenance

• D-Shield overhead analysis:
• Additional I/O overheads
• Logic and storage overheads

• Sensitivity analysis of D-Shield schemes
• And more… NVMe Read/Write path in D-Shield

D-Shield-Hybrid metadata storage
D-Shield I/O overheads
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Thanks! Questions?

Md Hafizul Islam Chowdhuryy
CASR Lab (https://casr.ece.ucf.edu)
Email: reyad@knights.ucf.edu
Email: fan.yao@knights.ucf.edu
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