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Hardware Security Threats to System

* Data is the main target of exploitation
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Secure Memory Architecture
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Limit trust boundary to the processor chip
Protect confidentiality and integrity of off-chip data
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Storage security provided through software or disk itself

No processor-side support for fast storage security @



Need for Architectural Support for Storage
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This work

Architectural framework for processor-side data protection
for fast storage devices.
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Desigh Objectives
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Objective 1: processor-side support (CPU as root of trust)

Objective 2: transparent to storage devices and NVMe protocols




Challenges
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C1: Intricate SW/HW interactions = excessive software intervention can be expensive

C2: Asynchronous control/data flow = requires hardware support to identify and map DMA requests

C3: Metadata I/O overheads = efficient metadata management tailored for storage I/O characteristics




Basic D-Shield Design
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NVMe-optimized Security Metadata

e Storage metadata are stored separately in NVMe disks

* Three types of security metadata = similar to Secure Memory
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D-Shield Operation (Read)
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C1: Storage security metadata maintenance without “Intricate SW/HW interactions”
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C2: Compatibility with NVMe “Asynchronous control/data flow”
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C3: NVMe-optimized metadata design to reduce “Metadata I/O overheads”
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D-Shield-Hyb: Cross Domain Access Optimization

Moving data between protection domains (i.e., memory and storage) can be expensive
Additional utilization of the cryptographic engine
Prolonged NVMe data path

Re-encryption only required if the actual data changes (i.e.,
processor write updating the data)




D-Shield-Hyb: Cross Domain Access Optimization
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Shield-Hyb)

* Bookkeep the ownership of
logic blocks in memory

* Track the security domain for
transferred data block

* Performs only one iteration of
decryption/encryption on-
demand

Processor write to N @



D-Shield-Pro: In-Memory Caching

* Storage metadata cache misses
have high overheads

* Miss in CMAC block is more
expensive since it may require
additional metadata access
(i.e., for Merkle tree blocks)

* Idea: In-memory CMAC block
caching to increase the CMAC

block hit ratio
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Experimental Setup

+* Simulator: Gem5-based full-system simulation (SimpleSSD)

«* OS: Ubuntu 18.04; Kernel: Linux 4.9  Hardware Configurations
Processor 4-core, 3.0 GHz in-order, x86
L1 I/D-cache Private, 64KB, 4-way
L2 cache Shared, 16 MB, 16-way
Main memory DDR4 based 16GB
Cryptographic Engine

Encryption/Hash operation (64B) | 40 cycles
— N

DMA Interception Engine I

- mm oEm oy,

Metadata cache 256KB 8-way each

\H_ash operation (512B) 320 cycles R
NVMe Disk

Capacity 512GB

Cell model Z-NAND based MLC PCM

Avg. random access latency(pS) READ: 10.5, WRITE: 9




Evaluation Methodology

** Workloads:

* 1/0 intensive applications: Flexible /0
* Server-class applications: database, document storage system
* Graph algorithms: YCSB suite (twitter follow network)

¢ Baselines (All variants include secure memory):

= |nsecure: Default NVMe storage system without security mechanism
= Enc: dm-crypt-based encryption for NVMe storage system
= Enc+Int: dm-crypt with dm-integrity for NVMe disk encryption and integrity checking

d



Evaluations: D-Shield Performance
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# of transactions (from left to right): 128K, 256K, 512K

Runtime (normalized to Insecure) of FIO benchmark
Sequential workloads: 4.4% overhead compared to Insecure (Avg)

4.1x less compared to Enc, 10x less compared to Enc+int

Random workloads: 39% overhead compared to Insecure (Avg)
2.05x less compared to Enc, 7x less compared to Enc+Int




Evaluations: D-Shield Performance
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Throughput of D-Shield on real-world server applications

D-Shield can maintain 94% (Avg) throughput compared to Insecure
24% higher compared to Enc and 49% higher compared to Enc+Int




Evaluations: Hardware Overhead

NVMe storage overhead: 3.14% for Security Metadata

On-chip storage overhead: 2x256KB for Storage Metadata Caches

552 Bytes for Region Table

In-memory storage: 128MB for In-memory Cache (D-Shield-Pro only)

D-Shield on-chip logic:

* Implemented using Verilog Module
e Synthesized with Synopsis DC with 45nm
Logic Block Buffer 0.23
Security Control Logic 0.08

d



Conclusion

* Existing storage protection offers limited security and impose high overhead
* D-Shield offers architectural framework for processor-side storage security
* D-Shield-Hybrid optimizes cross-domain data transfer substantially
* D-Shield-Pro reduces metadata overheads through in-memory caching
* Modest performance overheads in real-world workloads
 While providing state-of-the-art data security
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More on Paper
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 And more...
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Thanks! Questions?

Md Hafizul Islam Chowdhuryy

CASR Lab (https://casr.ece.ucf.edu)
Email: reyad@knights.ucf.edu
Email: fan.yao@knights.ucf.edu
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