### **D-Shield**: Enabling Processor-side Encryption and Integrity Verification for Secure NVMe Drives

Md Hafizul Islam ChowdhuryyMyoungsoo Jung<br/>KAISTFan YaoAmro Awad<br/>NC State UniversityUniversity of Central FloridaKAISTUniversity of Central FloridaNC State University

Presenter: <u>Md Hafizul Islam Chowdhuryy</u> Computer Architecture and Systems Research Lab, University of Central Florida



29th IEEE International Symposium on High-Performance Computer Architecture (HPCA-29) February 25<sup>th</sup> – March 1<sup>st</sup>, 2023

## Hardware Security Threats to System

- Data is the main target of exploitation
- Multiple attack vectors are possible for off-chip data





### Secure Memory Architecture



**Limit trust boundary** to the processor chip Protect confidentiality and integrity of **off-chip data** 

Mainly focus on **memory security** 

Storage security provided through software or disk itself No processor-side support for fast storage security



### Need for Architectural Support for Storage Security

- Pitfalls of existing solutions:
  - Self-encryption disks: encrypts data in the storage itself
    - Do not protect physical attacks (i.e., bus snooping)
  - Software-based disk encryption and integrity checking?



- Emerging ultra-fast storage devices will further increase the bottleneck
  - Microseconds range access latency (e.g., Intel Optane SSD)



## **Design Objectives**



Objective 1: processor-side support (CPU as root of trust)

Objective 2: transparent to storage devices and NVMe protocols



# Challenges



**C1:** Intricate SW/HW interactions  $\rightarrow$  excessive software intervention can be expensive

C2: Asynchronous control/data flow  $\rightarrow$  requires hardware support to identify and map DMA requests

C3: Metadata I/O overheads → efficient metadata management tailored for storage I/O characteristics



### **Basic D-Shield Design**





## NVMe-optimized Security Metadata

- Storage metadata are stored separately in NVMe disks
- Three types of security metadata  $\rightarrow$  similar to Secure Memory



UCF

## **D-Shield Operation (Read)**





### D-Shield-Hyb: Cross Domain Access Optimization

 Basic D-Shield provides proper off-chip data security with standalone protection for memory and storage

Moving data between protection domains (i.e., memory and storage) can be *expensive* Additional utilization of the cryptographic engine Prolonged NVMe data path





### D-Shield-Hyb: Cross Domain Access Optimization



- Bookkeep the ownership of logic blocks **in memory**
- Track the security domain for transferred data block
- Performs only one iteration of decryption/encryption <u>on-</u> <u>demand</u>



# D-Shield-Pro: In-Memory Caching

- Storage metadata cache misses have high overheads
- Miss in CMAC block is more expensive since it may require additional metadata access (i.e., for Merkle tree blocks)
- Idea: <u>In-memory CMAC block</u> <u>caching</u> to increase the CMAC block hit ratio





## **Experimental Setup**

#### **Simulator:** Gem5-based full-system simulation (SimpleSSD)

**\* OS:** Ubuntu 18.04; **Kernel:** Linux 4.9

| Hardware                        | Configurations                |  |
|---------------------------------|-------------------------------|--|
| Processor                       | 4-core, 3.0 GHz in-order, x86 |  |
| L1 I/D-cache                    | Private, 64KB, 4-way          |  |
| L2 cache                        | Shared, 16MB, 16-way          |  |
| Main memory                     | DDR4 based 16GB               |  |
| Cryptographic Engine            |                               |  |
| Encryption/Hash operation (64B) | 40 cycles                     |  |
| DMA Interception Engine         |                               |  |
| Metadata cache                  | 256KB 8-way each              |  |
| Hash operation (512B)           | 320 cycles                    |  |
| NVMe Disk                       |                               |  |
| Capacity                        | 512GB                         |  |
| Cell model                      | Z-NAND based MLC PCM          |  |
|                                 |                               |  |



## **Evaluation Methodology**

- Workloads:
  - I/O intensive applications: Flexible I/O
  - Server-class applications: database, document storage system
  - Graph algorithms: YCSB suite (twitter follow network)
- **\*** Baselines (All variants include *secure memory*):
  - Insecure: Default NVMe storage system without security mechanism
  - Enc: dm-crypt-based encryption for NVMe storage system
  - Enc+Int: dm-crypt with dm-integrity for NVMe disk encryption and integrity checking



### **Evaluations: D-Shield Performance**



# of transactions (from left to right): **128K, 256K, 512K** 

Runtime (normalized to Insecure) of FIO benchmark

Sequential workloads: 4.4% overhead compared to Insecure (Avg)

**4.1x less** compared to **Enc**, **<u>10x less</u>** compared to **Enc+Int** 

Random workloads:

**bads:** 39% overhead compared to *Insecure* (Avg)

**<u>2.05x less</u>** compared to **Enc**, **<u>7x less</u>** compared to **Enc+Int** 



### **Evaluations: D-Shield Performance**



#### Throughput of D-Shield on real-world server applications

D-Shield can maintain 94% (Avg) throughput compared to *Insecure* 24% higher compared to <u>Enc</u> and 49% higher compared to <u>Enc+Int</u>



### **Evaluations: Hardware Overhead**

- <u>NVMe storage overhead</u>: **3.14%** for **Security Metadata**
- On-chip storage overhead: 2x256KB for Storage Metadata Caches

552 Bytes for Region Table

- <u>In-memory storage:</u> **128MB** for **In-memory Cache** (D-Shield-Pro only)
- <u>D-Shield on-chip logic:</u>
  - Implemented using Verilog
  - Synthesized with Synopsis DC with 45nm

| Module                 | Area<br>(mm <sup>2</sup> ) |
|------------------------|----------------------------|
| Logic Block Buffer     | 0.23                       |
| Security Control Logic | 0.08                       |



### Conclusion

- Existing storage protection offers limited security and impose high overhead
- D-Shield offers architectural framework for processor-side storage security
- D-Shield-Hybrid optimizes cross-domain data transfer substantially
- D-Shield-Pro reduces metadata overheads through in-memory caching
- Modest performance overheads in real-world workloads
  - While providing state-of-the-art data security



### More on Paper

- Architectural design space explorations
- Additional details on D-Shield designs:
  - Complete R/W paths
  - Metadata arrangements and maintenance
- D-Shield overhead analysis:
  - Additional I/O overheads
  - Logic and storage overheads
- Sensitivity analysis of D-Shield schemes
- And more...





#### NVMe Read/Write path in D-Shield



#### **D-Shield-Hybrid metadata storage**



### Thanks! Questions?

Md Hafizul Islam Chowdhuryy CASR Lab (<u>https://casr.ece.ucf.edu</u>) Email: <u>reyad@knights.ucf.edu</u> Email: <u>fan.yao@knights.ucf.edu</u>