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ABSTRACT
Recent studies have revealed much detailed information about the
translation lookaside buffers (TLBs) of modern CPUs, but we find
that many properties of such components in modern GPUs still re-
main unknown or unclear. To fill this knowledge gap, we develop a
new GPU TLB reverse-engineering method and apply it to a variety
of consumer- and server-grade GPUs in Turing and Ampere gener-
ations. Aside from learning significantly more comprehensive and
accurate GPU TLB properties, we discover a design flaw of NVIDIA
Multi-Instance GPU (MIG) feature. MIG claims full partitioning of
the entire GPU memory system for secure GPU sharing in cloud
computing. However, we surprisingly find that MIG does not parti-
tion the last-level TLB, which is shared by all the compute units in
a GPU. Exploiting this design flaw and learned TLB properties, we
are able to construct a covert channel for data exfiltration across
MIG-enforced isolation. To the best of our knowledge, this is the
first attack on MIG. We evaluate the proposed attack on a com-
mercial cloud platform, and we successfully achieve reliable data
exfiltration from a victim tenant at a speed of up to 31 kbps with a
very high accuracy around 99.8%. Even when the victim is using
the GPU for deep neural network training, the transmission can
still reach more than 25 kbps with a more than 99.5% accuracy. We
propose and implement a mitigation approach that can effectively
thwart data exfiltration through this covert channel. Additionally,
we present a preliminary study on exploiting the access patterns of
the last-level TLB to infer the identity of applications running in
other MIG-created GPU instances.
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1 INTRODUCTION
Over the last decade or so, people have witnessed the rising popu-
larity of Graphics Processing Units (GPUs). It is reported that the
sales of standalone GPUs had reached 22 million units in just the
first quarter of the year 2021 [44]. Aside from being needed for high-
quality graphics rendering, GPUs have evolved into a type of highly
programmable, massively parallel coprocessors that became broadly
utilized to accelerate the execution of many compute-intensive ap-
plications ranging from medical imaging to deep learning.

Thewide employment of GPUs inevitably urges a thorough study
on their security implications from various perspectives, and indeed
a number of works have been conducted lately [3, 18, 20, 24–26, 55,
58]. Many of these studies have signified that potential information
leakage will be a major security concern if the use of a GPU is
shared. Nevertheless, sharing a powerful GPU between multiple
users has been an ever increasing trend in cloud computing.

Tomaximally fortify the security of GPU sharing (and also ensure
several other desired properties like quality of service), NVIDIA has
introduced a new feature namedMulti-Instance GPU (MIG) since its
Ampere generation in the server-grade GPUs (e.g., A100 and A30).
According to NVIDIA [29, 31], MIG creates multiple GPU instances
through spatially partitioning hardware so that each instance is
entirely isolated with its own compute, memory, and interconnect
resources. Undoubtedly, such strong isolation makes each GPU
instance behave like a standalone device to provide predictable per-
formance without being affected by others, and can help eradicate
those potential cross-instance information leakage attacks that are
achieved by manipulating shared hardware components. Given its
great benefits, GPU-as-a-Service (GaaS) based on MIG has rapidly
emerged [4, 19, 36, 40, 41, 50].

In this work, we investigate whether each GPU instance created
using MIG really has separate and isolated paths through the en-
tire memory system as claimed.1 NVIDIA has demonstrated solid
partitioning of the last-level cache, memory controllers, on-chip
crossbar ports, and DRAM buses [31, 32], and thus we decide not
to examine these components. Instead, we focus on one class of
important but non-exemplified microarchitectural components, the
translation lookaside buffers (TLBs), to understand how MIG han-
dles them and further check if the guaranteed isolation for security
is still fully credible.

To conduct the intended investigation, we need to know the
details of the TLBs in such modern GPUs. However, NVIDIA does
1Appendix A gives the excerpts from NVIDIA documents regarding such claims.
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not disclose any information about them. In the past, a number
of reverse-engineering attempts have been made to find out the
possible structures of the GPUTLBs [14–16, 23, 26, 52]. Even though
these studies provide certain insights, the knowledge they have
revealed is either too coarse-grained or only related to obsolete
GPUs, and a more critical problem is that some of their results may
not be accurate as shown later in this paper. Very recently, Tatar et
al. have illustrated that it is possible to exploit TLB incoherence for
very accurately reverse-engineering the TLBs of modern CPUs [47].
Inspired by their work, we determine to leverage TLB incoherence
to learn the properties of TLBs in modern GPUs.

While this direction sounds feasible and promising, many chal-
lenges exist. First, we need to understand the GPU page tables and
how they are used in practice. Yet, unlike the well-documented CPU
page tables, detailed knowledge of the GPU page tables is barely
known to the public, especially as to the GPUs in the post-Pascal
generations like Turing and Ampere. Second, we need to know
how to introduce incoherence to the GPU TLBs of interest. Because
the involved page table entries are in the GPU memory which is
independent of the host memory, a primitive for correctly editing
such entries at run time should be constructed. Third, aiming at
thoroughly reverse-engineering the GPU TLBs, we need to carry
out the investigation from the perspective of not only data accesses
but also instruction fetches. Although data pages can be easily allo-
cated and accessed in CUDA, there is no support for us to create
code pages, to which the control flow can be arbitrarily transferred.

In this paper, we have addressed all the above-mentioned chal-
lenges and successfully managed to exploit the injected incoherence
to fully reverse-engineer the TLBs in those MIG-supported GPUs
(and also several up-to-date consumer-grade GPUs). Interestingly,
and perhaps surprisingly, we discover that MIG does not partition
the GPU TLB. More specifically, we find that all the GPU instances
created by MIG actually share the use of the entire last-level TLB.
Even though the translation coverage of the upper-level unshared
TLBs in each GPU instance is so large that accesses to the last-level
TLB are rare in a normal circumstance, we show that an attacker
can deliberately create contention on the shared TLB to enable
a cross-GPU-instance covert channel for data exfiltration. To our
knowledge, this is the first microarchitectural attack against MIG.
We also briefly demonstrate that such contention may be leveraged
to identify the applications running in another GPU instance.

Note that, apart from MIG, sharing a (server-grade) GPU be-
tween multiple contexts may be enabled by using the Multi-Process
Service (MPS) feature in CUDA or NVIDIA’s special virtualization
software named the virtual GPU (vGPU) [28, 33]. Nevertheless, we
need to mention that sharing a GPU between mutually distrusting
users in a cloud must not be built on MPS (see Section 2.3 for its
reasons), even though many recently proposed GPU data exfiltra-
tion attacks have unrealistically assumed the opposite [3, 24]. On
the other hand, vGPU can be leveraged to achieve GPU sharing in
multi-tenancy scenarios, but at the time of this writing, we had not
found a single cloud provider really using vGPU for this purpose.
By contrast, there are increasing commercial clouds relying on MIG
to provide their customers with virtualized GPUs, and we have
mounted our attack on one of such platforms, Puzl Cloud [40], to
demonstrate the possibility of this threat in practice.

The main contributions of this paper are:

• We formulate a systematic method for comprehensively
reverse-engineering the TLBs of modern GPUs. The method
is built on injecting TLB incoherence, for which we have de-
mystified the GPU page tables and managed to identify and
modify corresponding page table entries in GPU memory.

• We apply this reverse-engineering method to a variety of
consumer- and server-grade GPUs in Turing and Ampere
generations. We disclose some previously undiscovered com-
ponents (e.g., instruction TLB and TLB slices) and rectify
certain inaccurate properties given in prior studies (e.g., set
selection functions and TLB sub-entries).

• We discover that NVIDIA MIG does not partition the last-
level TLB even though it claims full partitioning of the entire
memory system for the created GPU instances. We exploit
this design flaw and the reverse-engineered TLB properties
to create a covert channel for cross-GPU-instance data exfil-
tration. It is the first microarchitectural attack breaking the
isolation guarantee of MIG.

• We evaluate the proposed covert channel not only in a lab
environment but also against a real cloud system that allows
its users to rent MIG-created GPU instances. The results
show that the bandwidth of the channel can reach more than
31 kbps and the accuracy is around 99.8%. Even in situations
where the tenants are using the GPU to train deep neural
network models, it can still reach more than 25 kbps with a
more than 99.5% accuracy.

• We present our preliminary study on a side-channel attack
that infers which machine learning (ML) framework is being
used in another GPU instance. Using six publicly available
frameworks, we show that it is possible to achieve 100%
inference accuracy even without specific information about
the models or datasets being operated within the framework.

We also release our reverse-engineering tools at https://github.com
/0x5ec1ab/gpu-tlb.git.

Responsible disclosure: We have reported the findings to NVIDIA
in October 2022. NVIDIA informed us that a ticket has been opened
for its development team to investigate the issue. So far, we have
not received any updates.

2 BACKGROUND
2.1 GPU Hardware Architecture
Over the years, GPUs have evolved from hardwired graphics ac-
celerators into highly programmable, massively parallel coproces-
sors, whose basic compute units are called Streaming Multipro-
cessors (SMs). Each SM has a set of simple cores, and it executes
groups of parallel threads (known as warps) in a Single-Instruction
Multiple-Thread (SIMT) fashion. As technology improves, there are
commonly tens of SMs in a GPU capable of running thousands of
threads simultaneously. In terms of NVIDIA GPUs, SMs are further
organized into two layers of abstraction based on how they are con-
nected to other hardware components. Each pair of tightly related
SMs first forms a unit called Texture Processing Clusters (TPC),
and then multiple TPCs are grouped together to form a bigger unit
called Graphics Processing Cluster (GPC).

To serve the memory bandwidth demands of a large amount of
threads, a GPU has its dedicated memory system, which consists

https://github.com/0x5ec1ab/gpu-tlb.git
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of on-chip caches and off-chip GPU memory. Similar to the host
memory on the CPU side, GPU memory is also based on DRAM.
Currently, GDDR6 and HBM2 are the two most widely used DRAM
types in NVIDIA GPUs. Note that the memory systems of the CPU
and GPU are independent of each other, and before a program starts
running on a GPU, the corresponding code and data need to be
implicitly or explicitly copied to the GPU memory first.

It needs to be mentioned that GPU memory is virtualized, and
its management is based on paging. SMs generate virtual addresses,
and there is a memory management unit (MMU) on the GPU that
performs virtual-to-physical address translation in accordance with
page tables of the running GPU programs. Each running GPU pro-
gram, terms as a GPU context, has one page table that is regulated
by the GPU driver. A page table has multiple levels, and given a
virtual memory address, the MMU walks through the levels to find
the entry containing the desired translation information. Page table
walks are expensive, and the MMU uses TLBs to cache the recently
referenced page table entries to possibly avoid many such walks.

2.2 CUDA Programming Model
Originally, GPUs could only be programmed with graphics render-
ing APIs. As the need for leveraging GPUs to perform non-graphics
computing grows, several general-purpose GPU programming mod-
els have been developed, among which CUDA is arguably the most
successful and prevailing one [27].

In the CUDA programming model, code that runs on the GPU is
specified in functions called kernels. A GPU program consists of
one or more kernels. To have the GPU perform the computation
defined in a kernel, the driver sends a corresponding kernel launch
command to the GPU, which includes the configuration of the
needed threads. When the kernel is launched on the GPU, it is
executed as the user-configured grid of blocks of threads on SMs.

It is worth highlighting that CUDA uses a feature named Unified
Virtual Addressing (UVA) to provide a single virtual address space
for both the host memory and the GPU memory in the system [43].
(The feature made its debut in CUDA 4.) The CUDA runtime can
determine which physical memory a pointer refers to simply from
its value. With the support of UVA, another feature called Unified
Virtual Memory (UVM) has been made available since CUDA 6 [13].
Traditionally, data needs to be transferred between the host memory
and the GPU memory explicitly using specialized CUDA runtime
functions. UVM removes this explicit data transfer requirement
through automatically migrating data from one physical memory
to the other when needed. Although UVA is always in force, the
use of UVM needs to be specifically coded in a CUDA program.

2.3 GPU Virtualization
By default, a GPU disallows multiple kernels to execute in parallel.
Multi-Process Service (MPS) is a CUDA runtime mode that allows
multiple kernels to run simultaneously on the same GPU [28]. Even
so, MPS is not a GPU virtualization mechanism, as it combines
and executes all user kernels under the same GPU context. In a
multi-tenanted system, MPS should not be used, because it does
not provide address space isolation or error containment, allowing
clients to interfere with each other.

NVIDIA has introduced two mechanisms for GPU virtualization.
The first is vGPU, which enables multiple virtual machines (VMs)

to share a GPU in the cloud [31, 33]. Unlike MPS, vGPU ensures
separate GPU address spaces and execution contexts. Note that,
when virtualizing a GPU, vGPU spatially partitions its memory
but not compute resources. All the GPU compute resources are
scheduled among VMs in a time-sharing manner.

Multi-Instance GPU (MIG) is the other virtualization mechanism
available on more recent GPUs, and it enhances vGPU by spatially
partitioning the GPU compute resources as well [31, 32]. According
to NVIDIA, SMs in each MIG-created GPU instance have separate
and isolated paths through the entire memory system. The on-chip
crossbar ports, memory controllers, low-level cache banks, and
DRAM buses are all assigned uniquely to an individual instance.
Such strong isolation provides both security and predictable per-
formance guarantees to users of a shared GPU. With MIG, users
can treat GPU instances as if they were standalone GPUs.

2.4 TLB Incoherence
In general, there is a cache coherence protocol implemented in
hardware tomaintain coherent (data) cache states. However, there is
usually no hardware support for keeping TLB entries coherent with
their corresponding page table entries. To provide the necessary
coherence, system software (that is normally the operating system)
needs to perform TLB shootdowns to invalidate stale TLB entries
before any of them is used for address translation.

While TLB incoherence is considered erroneous in normal op-
erating situations, it has been exploited to form a method for ac-
curately deducing the properties of TLBs in CPU cores [47]. To
check if a TLB has a certain property, the main steps in the method
are to trigger a TLB fill with an address translation, modify the
corresponding in-memory page table entry (which introduces TLB
incoherence), carry out experiments designed to evict the in-TLB
entry according to the property, and invoke the translation again to
see whether the stale one or the newly modified one is used. If the
new translation is used, it implies that the expected eviction has
occurred and thus confirms that the property holds. Compared with
other reverse-engineering approaches that leverage timingmeasure-
ments or hardware performance counters, this incoherence-based
method is much more accurate and reliable.

3 DEMYSTIFYING GPU PAGE TABLES
Modern GPUs use paged virtual memory. Each GPU context has its
own virtual address space and operates solely on virtual addresses.
As we know, there should be some page table data structure for
virtual-to-physical address translation. To exploit TLB incoherence
for our reverse-engineering purpose, we first need to understand
the details about the GPU page tables as well as how to modify their
entries at run time. However, unlike the page tables used on the
CPU side whose details are all well-known, there is not too much
publicly available information on the GPU page tables. (We have
only found one document that is for the outdated Pascal GPUs [34].)
Thus, we take efforts to unveil these details.

3.1 GPU Page Table Organization
The page table for a GPU context is constructed by the GPU driver.
Although NVIDIA is reluctant to fully release its driver’s source
code, part of the code is in fact open-sourced and embedded in the
official driver. From the uncompressed driver, we have found pieces
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of code responsible for creating page table entries. By analyzing
such driver code and the only available document [34], we gain
knowledge about the basic organization of the page tables used in
all the post-Pascal generations (e.g., Turing and the newest Ampere).
Figure 1 illustrates the GPU page table formats.

21
Virtual Address 0202128293738464748

2 9 9 8

PD3(4KB) PD2(4KB) PD1(4KB) PD0(4KB)
entry size1024B entry size8B entry size8B

entry size16B

PF(2MB)
data

(a) 2MB-page translation.

58
Virtual Address 01516202128293738464748

2 9 9

PD3(4KB) PD2(4KB) PD1(4KB) PD0(4KB)
entry size1024B entry size8B entry size8B

entry size16B

PF(64KB)
data

PT(256B)
entry size8B

16

(b) 64KB-page translation.

Virtual Address 01112202128293738464748

2 9 9 8

PD3(4KB) PD2(4KB) PD1(4KB) PD0(4KB)
entry size1024B entry size8B entry size8B

entry size16B data

9
entry size8B

PT(4KB) PF(4KB)

12

(c) 4KB-page translation.

Figure 1: GPU 5-level page table hierarchy.

As shown in the figure, a modern GPU supports multiple page
sizes including 4KB, 64KB, and 2MB. The page table hierarchy has 5
levels, and a 49-bit virtual address is divided to select a walking path
through the hierarchy. Appendix B explains this hierarchy as well
as path selection in details, and here we only focus on where the
final address translations are stored, whose modifications introduce
TLB incoherence.

Figure 1a shows that the address translations for 2MB pages are
kept in entries of page directory 0 (PD0). Note that each PD0 entry
is 16B, and if it points to a 2MB huge page, its 28 bits [35 : 8] give
the 4KB page frame number to which the 2MB page’s first 4KB part
is mapped. As shown in Figure 1b and 1c, if a PD0 entry does not
refer to a 2MB page, it is divided into two 8B halves, each of which
points to a last-level page table (PT). The PT pointed by the lower
half is for translating 64KB large pages, and the PT pointed by the
upper half is for translating 4KB normal pages. An entry in either
type of PT has a size of 8B, and its 28 bits [35 : 8] give the number
of 4KB page frame to which the 4KB page or the 64KB page’s first
4KB part is mapped.

Apparently, with respect to 2MB, 64KB, and 4KB pages, the least
significant 21, 16, and 12 bits of the virtual address form the page

offset, respectively. We also need to mention that, according to the
driver, the newest Ampere GPUs support 512MB super pages as
well. In terms of 512MB pages, PD1 serves as the last-level page
table. However, we find that the driver does not use them currently.

3.2 GPU Page Table in Action
To modify the translation for a given virtual address at run time, we
first need to find out where the corresponding table entry locates.
Even though the page table hierarchy for a GPU context is created
by the driver on the CPU side, considering performance, it is ex-
pected that this data structure should be loaded somewhere in the
GPU memory for use. To verify this, we dump the GPU memory
and check if such page tables can be found in the dumped memory.

Our GPU memory dumper is implemented on top of the official
NVIDIA driver (version 470.63.01). More description of our dumper
is given in Appendix C. From a GPU memory dump, we can indeed
find and extract all the page tables, each of which is associated
with a running GPU context. Due to the well-structured nature of
such GPU page tables, the extraction can be efficiently and effec-
tively achieved. Given the obtained page tables, we can accurately
pinpoint the PT (or PD0) entry (and its GPU memory address) for
translating a virtual address by performing the corresponding page
table walk.

From the extracted page tables, we can also ascertain how pages
in different sizes are used in a running CUDA program. Our ob-
servation is that, for both code and data, 2MB pages are allocated
in general, except for those UVM-managed data pages whose size
can be 64KB (and 4KB; see Appendix D). This observation justifies
the arguments made by Nayak et al. in [26], but we also notice
that multiple UVM-managed 64KB pages can be merged into one
UVM-managed 2MB page if certain conditions are met, about which
Appendix D presents more details. As demonstrated later, we can
take advantage of this unveiled merging behavior to analyze more
intricate TLB properties that have been overlooked in [26].

3.3 GPU Page Table Entry Modification
Knowing the specific GPU memory address of the target entry, we
also need a write primitive to modify it. In our work, we achieve
this through the memory-mapped I/O (MMIO) [1].

GPUs are connected to their hosts via the peripheral compo-
nent interconnect express (PCIe) interface. Given a PCIe device,
there can be up to 6 base address registers (BARs) for mapping
the registers, I/O ports, and memory of the device into regions of
the host memory address space. In terms of an NVIDIA GPU, its
control registers are memory-mapped into a 16MB region defined
by BAR0 for this PCIe device. Among these registers, one named
PMC_BAR0_PRAMIN, which is mapped to the offset 0x1700 in the
BAR0-defined region, specifies the physical GPU memory address
of a 1MB GPU memory window.2 This 1MB GPU memory is also
mapped to the BAR0-defined 16MB region at the offsets ranging
from 0x700000 to 0x7FFFFF [1, 20]. By changing the address in
the PMC_BAR0_PRAMIN register appropriately, we can access the

2This 1MB GPU memory is called private RAM instance (PRAMIN) which is used
for storing states of the running GPU contexts. In our page table entry modification
approach, this window of GPU memory is repurposed for gaining direct access to GPU
memory.
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target entry through the 1MB GPU memory window to perform
modification at run time.

4 FULLY REVERSE-ENGINEERING GPU TLBS
Armed with knowledge of GPU page tables and how to modify the
mappings defined in them, we have effortlessly verified that the
TLBs of modern GPUs do not enforce coherence either. Therefore,
we can leverage such incoherency to infer the properties of these
GPU TLBs. In this section, we describe our reverse-engineering pro-
cess and show that all the details about the TLBs of either consumer-
grade GPUs (e.g., RTX 2080 and RTX 3080) or server-grade ones
(e.g., A100 and A30) can be accurately learned in a systematic way.
Table 1 lists the GPUs studied in this work.

TLB under examination

PTE

0x1234 → 0xDEAD
⁞

⁞

bring translation 
into target TLB

VPN: 0x1234
PFN: 0xDEAD

TLB

experim
ent

PTE
VPN: 0x1234
PFN: 0xBEEF

%clock64
spin for a period

modify PTE via MMIO

0xDEAD page frame 
is accessed

access
target TLB

0xBEEF page frame 
is accessed

Figure 2: Generic operation for learning GPU TLB properties.

The generic operation performed in the reverse-engineering pro-
cess is illustrated in Figure 2. We 1 manipulate the state of the TLB
under inspection to have a known address translation, 2 conduct
some experiments designed to use the eviction of this translation
to signify certain properties, 3 modify the translation in the GPU
page table, and 4 reference the TLB again to check if the eviction
of interest has happened, which is indicated by the new translation
being used. Notice that we need to rely on a host process to modify
GPU page table entries in the middle of a running kernel through
the MMIO (see Section 3.3), and thus synchronization is needed
between the active kernel and the host. Unfortunately, CUDA does
not provide any primitive for such kind of synchronization. We
circumvent this problem by making the kernel repeatedly read the
%clock64 register until certain cycles have passed, during which
we can modify the page table properly.

Additionally, it is worth mentioning that the address space layout
randomization (ASLR) can cause some inconvenience in the reverse-
engineering process, as it also randomizes the virtual address ranges
allocated to the GPU driver. For a better control over the virtual
addresses needed in several steps, we turn off the ASLR during the
entire process.

4.1 TLB Structure
Given a GPU, we start with investigating several fundamental prop-
erties of its TLB structure, such as how many levels the TLB has,
what organization a level uses, and whether a level is shared by SMs.
We focus on the topmost TLB level first, and then go to examine
the lower levels.

4.1.1 L1-iTLB and L1-dTLB. Although many efforts have been
made to reverse-engineer the GPU TLBs [14–16, 23, 26, 52], the
following basic question has never been answered: “Is the L1 TLB
of a GPU split into instruction and data TLBs (i.e., similar to that of
a CPU) or just unified?”. Former studies had trouble to resolve it
due to the lack of knowledge on how to create and execute arbitrary
GPU code pages. Here we can easily find a quick answer to the
question via exploiting TLB incoherence.

First, we access a very large set of UVM-managed 64KB pages
in an infinite loop of a launched kernel. We make sure that the set
of pages is large enough to overwhelm the TLB. (Appendix E gives
details on how to check this condition.) Next, we modify the address
mapping for the code page where the kernel resides. The newly
mapped code page frame is just filled with zeros, and when it is
executed, an illegal instruction exception will be raised to terminate
the GPU context. We observe that the execution of the infinite loop
on all the tested GPUs is not affected after modifying the address
translation for the code page, which implies that (at least) the L1
TLB of a GPU is split into an L1-iTLB and an L1-dTLB.

To help thoroughly explore the properties related to iTLBs, it is
better for us to solve the problem of fabricating GPU code pages and
rendering SMs to execute them, which has never been addressed
before. Since essentially there is no difference between code and
data pages except for the semantics of their contents, we believe
that SMs can execute a data page containing GPU instructions as
long as we can divert the control flow to it. To this end, we have
studied and reverse-engineered the encoding of the unconditional
branch instruction used in modern Turing and Ampere GPUs.

0x003FDE000383FFFFFFFFFFF000007947

opcodehi opcodelo

virtual address offsetcontrol flagsasm volatile(
  “L0:”
  “bra L0;”
);

-Xptxas -O0

Figure 3: The encoding of an unconditional bra instruction whose target
is itself. To keep this inline PTX assembly code from being optimized out,
“-Xptxas -O0” is passed to nvcc.

Figure 3 shows the encoding of an unconditional branch in-
struction whose target is just itself (namely, self-looping). Through
experiments with adding several dummy instructions before/after
bra and moving the label L0 around, we find that its encoding
can be divided into three parts, and in terms of our goal, we are
only interested in the offset part. An instruction has 128 bits and is
16-byte aligned in both Turing and Ampere GPUs. The offset part
of a bra instruction spans 50 bits from the 33rd bit to the 82nd bit
inclusive and the most significant bit in the offset part is the sign bit.
(Thus, the offset in Figure 3 is -16.) We discover that the offset is the
difference between the virtual address of the target instruction and
the virtual address of the instruction next to the branch instruction.

With the understanding of this branch instruction, we can con-
struct and chain simple code pages, as shown in Figure 4. Let
{𝐴1, 𝐴2, · · · , 𝐴𝑁 } be the base addresses of 𝑁 data pages. To turn
a page at 𝐴𝑖 into a code page and link it to the next page at 𝐴𝑖+1,
we overwrite its first 16 bytes with the encoding value given in
Figure 3 and set the offset to 𝐴𝑖+1 − (𝐴𝑖 + 16). Because executing
one instruction in a code page suffices for our purpose, we can
simply fill the rest of the page with zeros. At address 𝐴0, we have a
bra instruction like the one shown on the left in Figure 3 placed
in a kernel function, and we alter its offset to 𝐴1 − (𝐴0 + 16). To
transfer control back to the instruction at 𝐴0 + 16 from the faked
ones, we set the offset of the instruction in the last code page to
(𝐴0 + 16) − (𝐴𝑁 + 16). How to find 𝐴0 and alter the offset of bra
at 𝐴0 are described in Appendix E.

We observe that if using created code pages only, we have to
let 𝑁 be a large number to make the modified page table entry for
the kernel’s code page be used; however, if we also access a large
number of data pages, 𝑁 just needs to be as small as 16 on all tested
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Figure 4: Fabricating GPU code pages out of data pages and integrating them
into execution.

GPUs. We further repeat this for many times with created code
pages at different virtual addresses, and the results are consistent.
Thus, we can infer that the L1-iTLB of these GPUs has 16 entries and
is fully-associative (otherwise, the smallest 𝑁 evicting the target
address translation should differ from 16 occasionally). Moreover,
this observation signifies that there are TLBs at lower levels and
they are unified (otherwise, accessing data page address translations
should not affect 𝑁 ). Exchanging the above roles played by code
and data pages, we can learn that the L1-dTLB of all these GPUs
also has 16 entries and is fully-associative.

To check if the L1 TLB is shared, we run two threads of a kernel
function on two SMs.3 One thread uses a large number of code/data
pages, while the other thread uses fewer than 16 code/data pages
and will however experience TLB evictions if the two SMs share
the L1 TLB. We find that the L1-iTLB and the L1-dTLB are private
to each SM in Turing GPUs (e.g., RTX 2080), but they are shared
between the two SMs of each TPC in Ampere GPUs (e.g., RTX 3080
and A100).

4.1.2 L2-uTLB. As inferred above, other than a separate L1 TLB,
there should be one or more unified TLBs at lower levels. We notice
that if there is only one active thread 𝑇𝑎 , a very large number𝑀0
of pages (e.g., at least 3100 for RTX 3080) need to be referenced
to evict a target address mapping from the entire TLB no matter
which SM 𝑇𝑎 is running on; however, if there is a second thread
𝑇𝑏 running on an SM in another GPC4 and 𝑇𝑏 also accesses 𝑀0
pages,𝑇𝑎 just needs to use𝑀1 pages to cause the page table walker
to retrieve the modified translation, where𝑀1 is significantly less
than𝑀0 but still much greater than 16. This observation indicates
that at least two levels of unified TLBs, which we call L2-uTLB and
L3-uTLB, exist below the first level (because if there is only one
unified TLB level beneath L1,𝑀1 should be 16).

To gain insights into the L2-uTLB, we use the address mapping
for an arbitrarily selected page as the target and try to shrink𝑀1 by
taking out the pages one-by-one to check whether the target can
still be evicted – if so, removing it for good; otherwise, returning
it. As the TLBs at lower levels are unified, we use data pages for
convenience. Due to the reasons discussed later, we use a sequence
of 64KB pages managed by UVM and the virtual address of each
data page is separated by 0x100000 from that of the next page in the
sequence. These pages are linked together using pointer chasing.
To force any related translations out of the L1-dTLB, we also keep
the very first 16 pages of the ones removed from the sequence and
iterate them after each page in the sequence is accessed.
3By requesting for a large amount of shared memory when launching a kernel function,
we can force each SM to execute a single thread block. The %smid register gives the
SM identifier on which the thread block is running.
4For Turing GPUs,𝑇𝑏 can run on an SM in the same GPC.

Interestingly, this process always has 8 pages left in the sequence
to form a set for evicting the target no matter which GPU in Table 1
is used. We repeat this process with different targets, and we find
that 𝑆𝐿2 disjoint sets can be derived and any target can be evicted
by exactly one of the 𝑆𝐿2 sets, where 𝑆𝐿2 is a power of 2 and also
𝑆𝐿2 × 8 ≈ 𝑀1. Therefore, we reach a conclusion that the L2-uTLB
is 8-way set-associative in all the tested GPUs. Notice that the
number 𝑆𝐿2 of sets is microarchitecture- and/or class-dependent
(see Table 1). We further accurately reverse-engineer how the L2-
uTLB sets are indexed, whose details are described in Section 4.2.

To find if the L2-uTLB is shared between SMs, we adopt the
method for testing L1 TLB sharing with only some slight changes.
Rather than fewer than 16 pages, the thread checking TLB evictions
uses more than 16 but fewer than 𝑆𝐿2 × 8 pages. We discover that
the L2-uTLB is private to each SM in Turing GPUs, but it is shared
between the SMs forming a GPC in all the Ampere GPUs.

4.1.3 L3-uTLB. To continue reverse-engineering the TLB at the
next level, we just leverage one active thread running on an SM. We
again start with choosing a data page and use its address translation
as the target. However, instead of assembling a sequence of pages
whose virtual addresses are consecutively separated by 0x100000,
we use pages whose address translations share the same L2-uTLB
set with the target (using the hash function described in Section 4.2
for identifying them). We need to use as many such pages (which
are also chained together) until the target gets evicted, and then
we prune them by applying the above-mentioned removing-or-
returning procedure. Note that we also pick 16 pages whose address
translations are evenly distributed in four other L2-uTLB sets than
the target’s. They are iterated after each page in the sequence is
accessed to help flush the L1-dTLB. Moreover, we collect the very
first 8 pages that are removed from the sequence and iterate them
as well after a page in the sequence is accessed to help flush the
corresponding L2-uTLB set.

For any consumer-grade GPU being inspected, we observe that
8 pages are always left to form an eviction set. Eventually, we can
derive 𝑆𝐿3 such sets and any target can be evicted by exactly one
of the 𝑆𝐿3 sets from the L3-uTLB, where 𝑆𝐿3 is a power of 2 and
microarchitecture-dependent (see Table 1). As 𝑆𝐿3 × 8 ≈ 𝑀0, we
can know that this 8-way set-associative L3-uTLB is the last level.

In contrast to consumer-gradeGPUs,MIG-supported ones (which
are all Ampere server-grade GPUs) seemingly have 8 more entries
in an L3-uTLB set because there are always 16 pages left to form an
eviction set. We can derive 𝑆𝐿3 eviction sets where 𝑆𝐿3 is a power
of 2, and any given translation can be evicted by exactly one of the
𝑆𝐿3 sets from the L3-uTLB. (Recall that the sequence for deriving
an eviction set consists of pages whose address translations are
cached in the same L2-uTLB set as the target.) However, there are
two reasons making us believe that the associativity cannot be
16. First of all, we notice that 𝑆𝐿3 × 16 ≈ 𝑀0 × 2. Second, given
any target, if we just access 8 or more but not all elements in the
corresponding eviction set, we surprisingly find that further using
one of many other eviction sets can then evict the target from the
L3-uTLB; but if fewer than 8 elements in the target’s eviction set are
referenced, no matter how we access the other 𝑆𝐿3 − 1 eviction sets,
the target cannot be forced out of the L3-uTLB. We also discover
that the 𝑆𝐿3 eviction sets can be evenly partitioned into two disjoint
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Figure 5: TLB structure of A30 and A100 GPUs.

groups and this “cross-set eviction” can be achieved if and only if
two sets belong to the same group. These observations lead to the
conclusion that the L3-uTLB in MIG-supported GPUs is still 8-way
set-associative and it is (physically or just logically) split into two
slices; and each slice has an 8-entry victim buffer shared by all the
TLB sets in the slice.

Using the same method as for checking L1/L2 TLB sharing,
we find that the L3-uTLB is shared by all the SMs in both the
consumer-grade GPUs and MIG-supported ones. Figure 5 illus-
trates the reverse-engineered TLB structure of A30 and A100 that
are two server-grade GPUs supporting MIG.

4.2 Set (and Slice) Selection Hash Functions
In spite of the fact that many efforts have been made to reverse-
engineer CPU and GPU TLBs, we find most of the approaches to
deriving the set selection functions either vague or ad hoc [9, 17,
26, 47]. Here we propose a systematic approach that can effectively
and elegantly determine the GPU TLB set selection hash functions.
Instead of acquiring eviction sets for each TLB set, our approach
just needs one and only one eviction set for an arbitrarily chosen
TLB set.

The approach consists of two primary steps. As we know, TLBs
use virtual addresses to index their sets. The first step of our ap-
proach is to identify which bits in the virtual address are used in the
set selection hash function. Without loss of generality, we assume
that a TLB has 𝑆 sets and a set has𝑊 ways. Given a page whose
virtual address is 𝐴0, we prune a sequence of pages to derive a min-
imal set {𝐴1, 𝐴2, · · · , 𝐴𝑊 } whose address translations evict that of
𝐴0. From this eviction set, we select an address 𝐴𝑖 arbitrarily and
create a set of 𝐵 new addresses {𝐴0

𝑖
, 𝐴1

𝑖
, · · · , 𝐴𝐵−1

𝑖
}, where 𝐵 is the

number of bits in virtual address and 𝐴 𝑗
𝑖
is generated by flipping

the bit at position 𝑗 of 𝐴𝑖 . For each 𝐴
𝑗
𝑖
, we check if it can replace𝐴𝑖

in the original set to achieve eviction. If {𝐴1, · · · , 𝐴 𝑗
𝑖
, · · · , 𝐴𝑊 } is

still an eviction set, it simply means that the bit at position 𝑗 is not
involved in selecting TLB sets (because if it is, with all other bits
unchanged, a different set number should be given by the function).

After the first step, we will acquire a set of 𝐻 bit positions
{𝑝0, 𝑝1, · · · 𝑝𝐻−1} involved in the set selection hash function. The
second step of our approach is to identify which of them should be
XOR’ed. Since there are 𝑆 sets in the TLB, the set selection function
certainly consists of log2 𝑆 XOR lines (e.g., the L2-uTLB set selec-
tion function of RTX 3080 has 7 XOR lines as shown in Figure 6).
We find that if a bit is involved in a TLB set selection hash function
of either CPU or GPU, it is normally associated with one XOR line
only. This implies that if flipping two of the 𝐻 bits at the same
time does not change the selected TLB set, these two bits are in the

same XOR line. We continue with 𝐴𝑖 chosen in the first step and
create a set of

(𝐻
2
)
new addresses {𝐴𝑝0𝑝1

𝑖
, 𝐴

𝑝0𝑝2
𝑖

, · · · , 𝐴𝑝𝐻−2𝑝𝐻−1
𝑖

},
where 𝐴 𝑗𝑘

𝑖
is generated by flipping the bits of 𝐴𝑖 at positions 𝑗 and

𝑘 together. For each 𝐴 𝑗𝑘
𝑖
, we examine if {𝐴1, · · · , 𝐴 𝑗𝑘

𝑖
, · · · , 𝐴𝑊 }

can still achieve the desired eviction. If so, we know that the bit at
position 𝑗 is connected to the bit at position 𝑘 by an XOR. After all
such pairs are identified, we combine the mutually XOR’ed ones
(e.g., 𝑗 ⊕ 𝑘 , 𝑘 ⊕ 𝑙 , and 𝑙 ⊕ 𝑗 are coalesced into 𝑗 ⊕ 𝑘 ⊕ 𝑙), and in
the end there should be log2 𝑆 combined groups, which essentially
form the hash function.

Notice that as we start flipping bits in these two steps, the more
significant position a bit holds, the larger virtual address gap the
flipping will produce. To make sure that all the created addresses
can be legally accessed in the GPU context, we take advantage of
the cudaMallocManaged() function to reserve as much address
subspace for the GPU context as we can.5

4.2.1 Set Selection Functions w.r.t. using 64KB Pages. With the
proposed approach, we can rapidly and accurately learn the hash
functions used for selecting the L2-uTLB and L3-uTLB sets. Recall
that the L3-uTLB of MIG-supported GPUs is sliced, and here the
learned L3-uTLB set selection function for those GPUs is to choose
a set within a slice. We will also show how slices are selected later.

At first, we still use UVM-managed 64KB pages. Figure 6 shows
the recovered functions for Ampere GPUs, from which we can see
that the set selection hash functions XOR bits in a regular fashion
from the 21st bit to the 47th bit of the virtual address. Extending the
naming rules given in [9], we call the functions shown in Figure 6
XOR-74620 and XOR-84620 respectively, where 7 or 8 denotes the num-
ber of XOR lines, the subscript denotes the starting bit position,
and the superscript denotes the ending bit position (inclusive). We
discover that if 64KB pages are used, the 21st to 47th bits are consis-
tently involved to build such functions for L2-uTLB and L3-uTLB
in all the tested GPUs. Appendix F shows the functions used in
Turing GPUs. Moreover, we find that this set of bits is used to build
these functions in old Pascal GPUs as well, and hence the functions
recovered in [26] are inaccurate.

It has to be mentioned that, from the perspective of a GPU, a
virtual addresses has 49 bits, but in practice its 48th and 49th bits
are always zero. This is because the virtual addresses used in a
GPU context are allocated from the user address space of the host
process, whose upper bound is 0x7FFFFFFFFFFF in the commonly
used systems. Therefore, we cannot flip these two high-order bits to
5On our system, we first leverage the cudaMallocManaged() function to “hoard” more
than 69TB virtual address subspace from 0x100000000000 to 0x555554000000, and
then use the function again to “hoard” more than 41TB subspace from 0x560000000000
to 0x7fffc8000000. The addresses in-between are used by the host process.
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(a) XOR-74620 is used for indexing L2-uTLB in Ampere consumer-grade GPUs (e.g., RTX 3060
and RTX 3080).
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(b) XOR-84620 is used for indexing L2-uTLB and sliced L3-uTLB inAmpere server-gradeGPUs
(e.g., A30 and A100) as well as indexing L3-uTLB in consumer-grade ones.

Figure 6: TLB set selection hash functions in terms of Ampere GPUs when
64KB pages are used.

find out whether they are involved in the selection hash functions
or not. Even if they were, it would not impose any impacts as they
are constantly zero.

4.2.2 Set Selection Functionsw.r.t. using 2MBPages. In [17], Koschel
et al. have revealed that the TLB set selection functions in Intel CPUs
may change when pages of different sizes are used.We should exam-
ine if this is also true in terms of NVIDIA GPU TLBs. To this end, we
use 2MB data pages to perform the proposed reverse-engineering
approach.

Although the cudaMalloc() API function allocates GPU mem-
ory directly in the form of 2MB pages, it does not provide us with
the control over sparsely distributing virtual addresses. To acquire
the needed 2MB pages as well as the flexibility of manipulating
virtual addresses, we take advantage of the page merging behavior
of the UVM that is described in Section 3.2. Eventually, we create a
sequence of UVM-managed 2MB data pages for deriving an evic-
tion set, where the virtual address of each 2MB page is separated
by 0x2000000 from that of the next page in the sequence. (The
reason for this 32MB offset is described in Section 4.4.) From the
derived eviction set, we can use our two-step method to recover
the functions.

44 43 41 ...4546 42 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 204748

(a) XOR-74625 is used for indexing L2-uTLB in Ampere consumer-grade GPUs (e.g., RTX 3060
and RTX 3080).

44 43 41 ...4546 42 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 204748

(b) XOR-84625 is used for indexing L2-uTLB and sliced L3-uTLB inAmpere server-gradeGPUs
(e.g., A30 and A100) as well as indexing L3-uTLB in consumer-grade ones.

Figure 7: TLB set selection hash functions in terms of Ampere GPUs when
2MB pages are used.

Interestingly, similar to that on the CPU side, the TLB set selec-
tion functions on the GPU side also change when pages of different
sizes are used. As an example, Figure 7 illustrates the functions
recovered for Ampere GPUs. Compared with the ones shown in

Figure 6, we can observe that the 21st to 25th bits of virtual ad-
dresses are no longer involved in the hash functions. (The number
of TLB sets at L2 or L3 is not changed.) Hence, according to our
naming convention, we have the XOR-74625 and XOR-84625 functions
shown in Figure 7. We confirm that this set of bit positions is used
to index TLB sets in other GPUs as well when 2MB pages are used.

4.2.3 Slice Selection Function. To learn the hash function used for
choosing one of the two L3-uTLB slices inMIG-supported GPUs, we
adapt our method for finding set selection hash functions. First, we
choose two 16-element eviction sets 𝐸0 and 𝐸1 at random from one
group derived by the specific procedure described in Section 4.1.3.
From 𝐸0, we arbitrarily extract 9 elements {𝐴0, 𝐴1, · · · , 𝐴8}. Recall
that the translation for 𝐴0 can be evicted from the L3-uTLB after
{𝐴1, · · · , 𝐴8} and 𝐸1 are accessed in order. Then, we start flipping
bits. Here, instead of focusing on one address, we flip the same
bit position in all the {𝐴0, 𝐴1, · · · , 𝐴8}. Given a bit position 𝑗 , the
address translations for {𝐴 𝑗

0, 𝐴
𝑗

1, · · · , 𝐴
𝑗

8} are still mapped to one
single L3-uTLB set, but whether the translation for𝐴 𝑗

0 can be evicted
by accessing {𝐴 𝑗

1, · · · , 𝐴
𝑗

8} and 𝐸1 depends on if 𝑗 is involved to
select the slice. If 𝑗 is not used in the slice selection hash function,
the translation for 𝐴 𝑗

0 is mapped to the same slice as before and it
will still be evicted from the L3-uTLB after accessing {𝐴 𝑗

1, · · · , 𝐴
𝑗

8}
first and then 𝐸1. Otherwise, the translation for 𝐴 𝑗

0 is cached in the
other slice and the eviction of interest cannot be achieved.

44 43 41 ...4546 42 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 204748

Figure 8: L3-uTLB slice selection hash function XOR-14625.

Figure 8 gives the reverse-engineered function for choosing L3-
uTLB slice in A30 and A100. Interestingly, we find that, unlike a set
selection function, the slice selection function is always the same
no matter if 64KB or 2MB pages are in use.

4.3 Replacement Policy
Following the analysis conducted in [47], we also leverage the
permutation vectors introduced in [2] to learn the replacement
policy implemented at each TLB level. Given a target TLB, we
prime one of its sets (or the whole TLB in the case of the fully-
associative L1-iTLB/dTLB) using a sequence of address mappings
for {𝐴𝑊 −1, · · · , 𝐴1, 𝐴0}. We manage to reference the address trans-
lation for 𝐴0 again in the primed TLB set, and then reference new
address translations mapped to the same TLB set to observe the or-
dering in which the translations in the primed set are evicted. This
ordering is denoted as 𝜋0 and is the permutation vector in terms
of reusing the translation for 𝐴0. The whole process is repeated to
learn other permutation vectors 𝜋1, · · · , 𝜋𝑊 −1 as well.

π0 = {0, 1, 2, 3, 4, 5, 6, 7}π0 = {0, 1, 2, 3, 4, 5, 6, 7}π0 = {0, 1, 2, 3, 4, 5, 6, 7} π1 = {1, 0, 2, 3, 4, 5, 6, 7}π1 = {1, 0, 2, 3, 4, 5, 6, 7}π1 = {1, 0, 2, 3, 4, 5, 6, 7} π2 = {2, 0, 1, 3, 4, 5, 6, 7}π2 = {2, 0, 1, 3, 4, 5, 6, 7}π2 = {2, 0, 1, 3, 4, 5, 6, 7} π3 = {3, 0, 1, 2, 4, 5, 6, 7}π3 = {3, 0, 1, 2, 4, 5, 6, 7}π3 = {3, 0, 1, 2, 4, 5, 6, 7}
π4 = {4, 0, 1, 2, 3, 5, 6, 7}π4 = {4, 0, 1, 2, 3, 5, 6, 7}π4 = {4, 0, 1, 2, 3, 5, 6, 7} π5 = {5, 0, 1, 2, 3, 4, 6, 7}π5 = {5, 0, 1, 2, 3, 4, 6, 7}π5 = {5, 0, 1, 2, 3, 4, 6, 7} π6 = {6, 0, 1, 2, 3, 4, 5, 7}π6 = {6, 0, 1, 2, 3, 4, 5, 7}π6 = {6, 0, 1, 2, 3, 4, 5, 7} π7 = {7, 0, 1, 2, 3, 4, 5, 6}π7 = {7, 0, 1, 2, 3, 4, 5, 6}π7 = {7, 0, 1, 2, 3, 4, 5, 6}

Figure 9: Permutation vectors for an L2-uTLB/L3-uTLB set.

Figure 9 presents the permutation vectors derived for the 8-way
set-associative L2-uTLB and L3-uTLB with respect to their replace-
ment policy in all the GPUs studied in this work. According to [2],
this form of permutation vectors signifies the LRU replacement
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policy. Similarly, the permutation vectors derived for the L1-iTLB
and L1-dTLB also indicate that they use the LRU replacement policy
in all the tested GPUs.

Regarding the victim buffer of each L3-uTLB slice inMIG-supported
GPUs, the policy is still LRU. Yet, we also observe a special behavior
of the victim buffer that address translations evicted from differ-
ent L3-uTLB sets actually cannot be held in the buffer at the same
time. In other words, if a translation is evicted from a set into the
buffer while the buffer presently contains translations evicted from
another set, the buffer will be flushed first. This special behavior
means that 9 elements of 𝐸1 suffice to achieve the desired eviction
in Section 4.2.3.

4.4 TLB Sub-Entries
Since applications running on GPUs usually utilize very large work-
ing sets, it will hurt performance badly if the TLB reach is too small.
TLB coalescing has been proposed to expand the translation cov-
erage of the TLBs on both the CPU and GPU sides [35, 37–39].
In [26], Nayak et al. claim that NVIDIA GPUs enforce TLB coalesc-
ing, which combines 16 address translations to occupy just one TLB
entry if the corresponding virtual page numbers are consecutive
and the mapped physical page frames are also contiguous. However,
the results of our experiments do not agree with this claim.

In our experiments, we selectively introduce and/or remove
contiguity in virtual and/or physical addresses6, and we notice
that address translations reside in one L2-uTLB or L3-uTLB entry
as long as the virtual base addresses of the corresponding pages
are (1) within the same 1MB-aligned address range if the pages
are 64KB, or (2) within the same 32MB-aligned range if the pages
are 2MB. This observation disproves the existence of dynamically
coalescing TLB entries and explains why we separate the base
addresses by 0x100000 (i.e., 1MB) and 0x2000000 (i.e., 32MB) when
using sequences of 64KB and 2MB pages respectively to perform the
above-mentioned tasks. Moreover, it casts light on why the starting
bit positions in the recovered TLB set selection hash functions are
20 and 25 when using 64KB and 2MB pages.

Instead of TLB coalescing, we conjecture that there are 16 sub-
entries in one L2-uTLB or L3-uTLB entry, and they have a one-to-
one mapping relationship with the address translations for 16 pages
of size 64KB or 2MB located in the same 1MB- or 32MB-aligned
range. If any sub-entry encounters an eviction, the rest of them are
also invalidated. Interestingly, we find that the entries of L1-iTLB
and L1-dTLB do not have such sub-entries.

4.5 Other Properties and Summary
We also investigate several other important properties of GPU TLBs
and give the results here. We leave out the detailed steps as they
are similar to the corresponding ones specified in [47]. Table 1
summarizes the inferred TLB properties for the GPUs studied in
this work.

Inclusivity and Exclusivity.We find that the L2-uTLB is neither
inclusive nor exclusive in all the inspected GPUs. The same is also
true for the L3-uTLB.

Reinsertion.We find that an L2-uTLB hit is reinserted into the L1
and an L3-uTLB hit is also reinserted into the L2 and L1. We do not
6To introduce or remove contiguity in physical addresses, we use our PTE modification
primitive to change the mapped page frames.

find that an L1 TLB hit reinserts the translation into the L2 or L3
after either is flushed. We also do not notice that the translations
evicted from an upper level are reinserted into its lower level(s).

Table 1: Summary of reverse-engineered TLB properties.

TLB Property GTX 1650 RTX 2080 RTX 3060 RTX 3080 A30 A100
(Turing) (Turing) (Ampere) (Ampere) (Ampere) (Ampere)

L1-iTLB
No. of sets 1 1 1 1 1 1
No. of ways 16 16 16 16 16 16

Subs per entry 0 0 0 0 0 0
Replacement LRU LRU LRU LRU LRU LRU

Shared ✗ ✗ TPC TPC TPC TPC
Hit ↦→ L2/L3† ✗/✗ ✗/✗ ✗/✗ ✗/✗ ✗/✗ ✗/✗

L1-dTLB
No. of sets 1 1 1 1 1 1
No. of ways 16 16 16 16 16 16

Subs per entry 0 0 0 0 0 0
Replacement LRU LRU LRU LRU LRU LRU

Shared ✗ ✗ TPC TPC TPC TPC
Hit ↦→ L2/L3† ✗/✗ ✗/✗ ✗/✗ ✗/✗ ✗/✗ ✗/✗

L2-uTLB
No. of sets 32 32 128 128 256 256
No. of ways 8 8 8 8 8 8

Subs per entry 16 16 16 16 16 16
Set selection∗ XOR-54620/25 XOR-54620/25 XOR-74620/25 XOR-74620/25 XOR-84620/25 XOR-84620/25
Replacement LRU LRU LRU LRU LRU LRU

Shared ✗ ✗ GPC GPC GPC GPC
Inclu/Exclu ✗/✗ ✗/✗ ✗/✗ ✗/✗ ✗/✗ ✗/✗

Hit ↦→ L1/L3† ✓/✗ ✓/✗ ✓/✗ ✓/✗ ✓/✗ ✓/✗
L3-uTLB

No. of sets 128 128 256 256 256+256 256+256
No. of ways 8 8 8 8 8 8

Subs per entry 16 16 16 16 16 16
Set selection∗ XOR-74620/25 XOR-74620/25 XOR-84620/25 XOR-84620/25 XOR-84620/25 XOR-84620/25
Replacement LRU LRU LRU LRU LRU LRU

Shared All SMs All SMs All SMs All SMs All SMs All SMs
Inclu/Exclu ✗/✗ ✗/✗ ✗/✗ ✗/✗ ✗/✗ ✗/✗

Hit ↦→ L1/L2† ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓ ✓/✓
Sliced ✗ ✗ ✗ ✗ ✓ ✓

No. of slices - - - - 2 2
Slice selection - - - - XOR-14625 XOR-14625
Victim buffers 0 0 0 0 2 2
Buf entries - - - - 8 8

† We use ↦→ to denote the reinsertion behavior. For example, “Hit ↦→ L1/L3” in terms of the L2-uTLB asks
whether an L2-uTLB hit is reinserted into the L1 or reinserted into the L3.
∗ In the subscript of each selection XOR function, the first number is the starting bit position when using
64KB pages and the second number is the starting bit position when using 2MB pages.

5 DATA EXFILTRATION AGAINST MIG
As aforementioned, NVIDIA has introduced the MIG feature in its
more recent server-grade GPUs (e.g., A100 and A30), and advocates
the use of this feature in GPU cloud computing for quality of service
and security. According to NVIDIA [31], MIG partitions all the
components of the memory system in such a GPU to provide users
with extremely strong and secure isolation in the multi-tenancy
scenarios. In this section, we challenge this confinement guarantee
by showing that data exfiltration across MIG-created GPU instances
can in fact be easily achieved.

5.1 Threat Model
We assume that there are two communicating entities, a sender
and a receiver, capable of using two GPU instances created by MIG
on a server-grade GPU. The sender has access to some sensitive
data, and attempts to transmit this piece of data to the receiver
through a covert channel. For example, the sender may be a trojan
embedded in aML framework for stealing trained DNNmodels. The
receiver is on the other end of the covert channel for collecting the
transmitted data. The sender and the receiver are both unprivileged.
Given the isolation promise of MIG, data exfiltration between GPU
instances created by MIG is theoretically unattainable (at least from
the perspective of manipulating logical resources).
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5.2 Cross-GPU-Instance Covert Channel
In Section 4, we have reverse-engineered the TLB properties of
server-grade GPUs supporting MIG (e.g., A30 and A100). At the
beginning, the reverse-engineering process was carried out without
MIG being involved. However, when performing the process on
GPU instances created by MIG, we surprisingly retrieved the same
properties as before at each level. Although those of the L1 and L2
TLBs are supposed not to change (since a GPC belongs to one GPU
instance as a whole), the unchanged L3-uTLB properties indicate
that this last-level TLB is not partitioned in spite of NVIDIA claim-
ing that the entire memory system is partitioned by MIG. Further
eviction experiments with separate GPU instances verify that the
L3-uTLB is indeed always shared.
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Figure 10: A30 GPUmemory access times in the cases of TLB hits and misses.
The histogram for A100 is almost the same.

Essentially, contention on the shared L3-uTLB can be exploited to
construct a covert channel for data exfiltration that MIG intends to
eradicate. The transmitted data can be inferred via measuring GPU
memory access times. Figure 10 shows the timing distribution of
GPUmemory accesses on L1-dTLB hits, L2-uTLB hits, L3-uTLB hits,
and L3-uTLB misses. For each case, 10,000 GPU memory accesses
are measured and we also ensure that the accesses do not incur
data cache misses. We can observe that almost all the memory
accesses suffering L3-uTLB misses need more than 1250 cycles to
finish while the memory accesses whose address translations can
be found in the TLB hierarchy just need less than 850 cycles. It is
also interesting to see that we may not be able to easily use timing
to distinguish L1 hits from L2 hits (even L3 hits) and L2 hits from L3
hits on suchMIG-supported GPUs, which highlights the advantages
of relying on TLB incoherence for accurately reverse-engineering
the TLB hierarchy.
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seq0 has M pages ↦ an L3-uTLB set of slice 0
seq1 has M pages ↦ an L3-uTLB set of slice 1
sender loop: 

if the ith bit is ‘0’:
iterate through seq0 once

else:
iterate through seq1 once

increment i 
wait for D cycles 

seq0 has N pages ↦ an L3-uTLB set of slice 0
seq1 has N pages ↦ an L3-uTLB set of slice 1
receiver loop:  

t0 is the time for accessing the ith page in seq0
t1 is the time for accessing the ith page in seq1
increment i in a wrap-around way
… if t0 > T and t1 < T for about 

K samples, a ‘0’ bit is received
if t0 < T and t1 > T for about 
K samples, a ‘1’ bit is received

otherwise, no bit is
transmitted

0 1 0 1 0 0 1 0

Figure 11: Protocol for cross-GPU-instance covert communication.

We create a protocol illustrated in Figure 11 to achieve the desired
cross-GPU-instance covert communication. The receiver leverage
the reverse-engineered slice and set selection hash functions to
derive two sequences, seq0 and seq1, of 𝑁 pages, where 8 < 𝑁 <

16. For seq0, the virtual-to-physical address translations of its 𝑁

pages will use a single arbitrarily chosen L3-uTLB set of slice 0.
Because the set selection function for an L3-uTLB slice is exactly the
same as that for an L2-uTLB (see Table 1), these 𝑁 translations will
use a single L2-uTLB set as well. The seq1 is constructed similarly
with respect to an L3-uTLB set of slice 1. The receiver constantly
loops through its seq0 and seq1. In a loop iteration, it first measures
the time t0 for accessing the page in seq0 and then measures the
time t1 for accessing the page in seq1. Since the LRU replacement
policy is used at each TLB level, we can expect that when a page
in seq0 or seq1 is accessed (after the TLBs have been warmed up),
its address translation cannot be in the L1 and L2 TLBs but can
be found in the L3 slice’s victim buffer if there is no one currently
flushing that buffer. In this case, t0 or t1 shall be in the range of 600
to 850 cycles. Otherwise, if someone else has evicted the translation
from the victim buffer, t0 or t1 shall be more than 1250 cycles.

Accordingly, the sender can create contention on the shared
L3-uTLB’s victim buffers to manipulate the receiver’s t0 and t1.
To this end, the sender also derive two sequences, seq0 and seq1,
of 𝑀 pages, where 𝑀 > 8, following the same rules as described
above for the receiver. When a bit ‘0’ needs to be sent, the sender
sequentially accesses each page in its seq0 for one time, which
can regularly force the translations referenced by the receiver out
of the slice 0’s victim buffer while not affecting the slice 1’s at all.
Thus, given a reasonable threshold 𝑇 , say 1000, the receiver will
observe t0 > 𝑇 and t1 < 𝑇 for around 𝐾 samples during a ‘0’
being sent, where 𝐾 depends on the number of pages in sender’s
seq0. Likewise, when a bit ‘1’ needs to be transmitted, the sender
iterates over its seq1 for one time and the receiver will observe
t0 < 𝑇 and t1 > 𝑇 for around 𝐾 samples. Furthermore, we may let
the sender wait for 𝐷 cycles between transmitting two bits to help
synchronization, especially when many bits are continuously sent.
Notice that the sender’s seq0 and the receiver’s seq0 do not need
to target an identical L3-uTLB set in slice 0. If the same set is chosen
by both, the contents in the victim buffer will be routinely evicted
due to the translations introduced by the sender; otherwise, the
victim buffer will be continually flushed due to the special behavior
stated in Section 4.3. The same is also true for seq1 of both sides.

An example is presented at the bottom of Figure 11, where the
sender and receiver use two separate GPU instances created by
MIG on an A30, and the sender has 𝑀 = 11 and 𝐷 = 0. From the
given trace of <t0, t1> samples in this example, it is not hard to
find that the received bits are “01010010”.

5.3 Evaluation
Before evaluating our cross-GPU-instance covert channel in a com-
mercial cloud environment, we examine its performance limits in
a lab environment that is set up on a Dell PowerEdge R740 server
(with two Xeon Silver 4114 processors and 64GB DDR4 2400 mem-
ory). We installed an A30 GPU in the server and let MIG create two
instances, each of which has 28 SMs and 12GB GPU memory. The
sender and receiver directly use the MIG-created GPU instances.

We read /dev/random to generate a piece of data having 65,536
bits (i.e., 8KB). We design the sender to transmit 8192 bits (i.e., 1KB)
each time with a 16-bit header. We adjust the bandwidth of the
covert channel and send the piece of data 10 times. We evaluate the
error rate using the Levenshtein edit distance between the transmit-
ted and received bits as the metric [21, 57]. The bandwidth of the
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channel is mainly determined by how long each loop iteration of
the sender takes. According to our protocol, the fastest bit-sending
iteration we can obtain is to use the smallest𝑀 and 𝐷 (i.e., 9 and
0), but we notice that a slightly larger𝑀 will not affect the sending
speed too much, and thus we will stick to𝑀 = 11 for simplicity. On
the receiver side, we also use 𝑁 = 11.

Table 2: Channel bandwidths and error rates in a lab environment.

Bandwidth Delay 𝐷 Max. Err. Rate Min. Err. Rate Avg. Err. Rate
31.47 kbps 0 0.24% 0.17% 0.21%
25.04 kbps 12,000 0.22% 0.09% 0.17%
20.71 kbps 24,000 0.20% 0.10% 0.16%
17.52 kbps 36,000 0% 0% 0%
15.39 kbps 48,000 0% 0% 0%

Starting from 0, we gradually increase the delay cycles𝐷 inserted
between transmitting two bits. As each GPU memory access having
a miss in the TLB hierarchy needs more than 1250 cycles, each time
we add 12,000 to 𝐷 (i.e., about 8∼10 such memory accesses). The
evaluation results are illustrated in Table 2. We can observe that
the bandwidth of this channel can reach up to 31.47 kbps with a
0.21% error rate on average. We have identified two causes for the
errors. The main cause is that when many 0’s or 1’s are consec-
utively sent, the receiver may estimate the number of these bits
inaccurately. The other one is that when two opposite bits are sent,
a long transition with t0 > 𝑇 and t1 > 𝑇 may appear sometimes,
which makes the signal of our interest too short to be recognized as
a valid bit. Inserting delay between sending bits reduces the speed
of the channel, but it can help mitigate the two problems causing
errors. Particularly, when 𝐷 becomes large enough, there will be
multiple samples with t0 < 𝑇 and t1 < 𝑇 separating a bit’s signal
from its neighbors’, and such samples can be leveraged to attain a
synchronization purpose. As shown in the last two rows of Table 2,
after knowing when a bit’s signal starts and ends, the receiver can
retrieve the messages without any error. We find that the fastest
speed such error-free data exfiltration can reach is 18.04 kbps when
𝐷 is 34,000 cycles.

To demonstrate the practicality, we perform the evaluation on a
commercial cloud platform, Puzl Cloud [40], which relies on MIG
to virtualize GPUs and provide secure GPU sharing to its users. We
registered multiple accounts, and managed to make three tenants,
A, B, and C, co-resident on a single A100, where each of A and B
occupies a quarter of the GPU and C uses a half of the GPU. We
assume that A is an attacker who runs the receiver and B is a victim
whose GPU program has been implanted with the sender. We re-
evaluate the bandwidth and error rate in very realistic scenarios
where the rent GPUs are used to train DNN models.

Even though an A30 is used in our lab environment while an
A100 is used in this cloud environment, we do not find any need for
changing the channel’s configuration, which signifies the flexibility
of this covert channel. As a baseline, we first perform the evaluation
without C and B running any programs. From the top part of Table 3,
we can observe that the results in two representative setups (that are
the fastest one with 𝐷 = 0 and an error-free one with 𝐷 = 36, 000)
does not show much difference compared with their counterparts
in Table 2.

Next, we let the tenant C train a ResNet-50 DNN model on the
CIFAR-100 dataset using PyTorch. This training process constantly
uses 4GB GPU memory. The middle part of Table 3 gives the eval-
uation results under this circumstance. Although training a large

DNN model is very memory-intensive, we can find that the perfor-
mance of our covert channel is not affected. The reason for such is
that the reach of each GPC’s L2-uTLB in MIG-supported GPUs is
up to 64GB7 and when executing a normal GPU program, the need
for L3-uTLB accesses is extremely rare after the warm-up phase.

Table 3: Channel bandwidths and error rates in a commercial cloud.

Baseline – C and B stay idle
Bandwidth Delay 𝐷 Max. Err. Rate Min. Err. Rate Avg. Err. Rate
31.36 kbps 0 0.34% 0.12% 0.23%
17.48 kbps 36,000 0% 0% 0%

C trains a ResNet-50 model on the CIFAR-100 dataset
Bandwidth Delay 𝐷 Max. Err. Rate Min. Err. Rate Avg. Err. Rate
31.30 kbps 0 0.33% 0.14% 0.22%
17.35 kbps 36,000 0% 0% 0%

B trains a ResNet-50 model on the CIFAR-100 dataset
Bandwidth Delay 𝐷 Max. Err. Rate Min. Err. Rate Avg. Err. Rate
25.42 kbps 0 0.89% 0.21% 0.47%
14.39 kbps 36,000 0.76% 0% 0.28%

In reality, it is possible that the GPU instance of the victim is be-
ing actively used for some legitimate workload during the malicious
covert communication. Thus, we need to evaluate the performance
of our covert channel in such a situation. To this end, we let B train a
ResNet-50 model on the CIFAR-100 dataset as well. The evaluation
results are given in the bottom part of Table 3, from which we can
see that the performance is negatively impacted. Nevertheless, the
average error rate is still very low – less than 0.5% if no delay is
inserted and less than 0.3% if 36,000 delay cycles are added. Further-
more, in terms of a setup, the total clock cycles needed for sending
a certain amount of bits are increased, which leads to a reduced
bandwidth (e.g., when 𝐷 = 0, there is about 6 kbps reduction).
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Figure 12: A snippet of a <t0, t1> trace when training a DNN and the sender
concurrently run on the victim’s GPU instance.

Amajor reason for such decreased bandwidth and increased error
rate is GPU context switching governed by the NVIDIA time-sliced
scheduler [51]. Figure 12 illustrates this case, from which we can
observe that the sender’s context is switched out between samples
107711 and 108702. Even though training a large DNN model and
sending data through our covert channel run concurrently on the
same GPU instance, the signal is not noisy at all and we can easily
retrieve the transmitted bits. Yet, at the sample 107710, we can
find that GPU context switching occurs in the middle of sending a
‘1’ bit, and such events may result in losing bits (if the split does
not generate clear signals) or duplicating bits (if clear signals are
generated on both sides of the split).

5.4 Mitigation
To thwart this data exfiltration attack, the most straightforward
and effective approach is to let MIG partition the L3-uTLB as well.
However, this requires NVIDIA to modify its hardware implemen-
tation, which takes time and effort. Moreover, it cannot be directly
used to protect the MIG-supported GPUs in the current clouds.
7An L2-uTLB has 2048 entries, and each entry has 16 sub-entries. Each sub-entry can
store a 2MB page’s address translation. Thus, the 64GB reach is given by 2048×16×2MB.
Note that any MIG-created GPU instance has no more than 40GB memory.
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Hence, we formulate a software-based mitigation approach that
is deployable in practice. The basic idea is to monitor the L3-uTLB
victim buffers in a similar way to the receiver and create a large
amount of noise through intense evictions when anomalous behav-
ior is detected. As shown by the evaluations, a benign GPU program
hardly has the need for accessing the L3-uTLB in its execution, and
thus when the monitoring finds that the number of its L3-uTLB
misses within a time window is above a threshold, we consider
there is an ongoing attack. Subsequently, the defense flushes the
victim buffers for some time. Note that this countermeasure needs
to be deployed on a GPU instance that is not allocated to any tenant.
As multiple GPU instances of different sizes can be created by MIG
on a server-grade GPU, we can use the smallest possible instance
for this defensive purpose. We have implemented a prototype and
verified that it can effectively disrupt the covert channel (i.e., the
receiver is made to continually observe t0 > 𝑇 and t1 > 𝑇 ) while
imposing no performance overhead on other tenants’ running GPU
programs (e.g., regardless of whether our prototype is deployed, it
takes the tenant C ∼79 minutes to train the model in the previous
example). This approach surely has drawbacks. As aforementioned,
it needs to occupy a single GPU instance, and the other drawback
is higher power consumption due to constant monitoring.

6 BEYOND DATA EXFILTRATION
In addition to the covert channel shown above, there are several
other potential attacks exploiting the unpartitioned L3-uTLB. Here,
we briefly illustrate a side-channel attack that infers which machine
learning (ML) framework is used in another GPU instance. (We
also discuss performance degradation possibilities in Appendix G.)
Note that, in practice, people tend to directly use ML frameworks
provided by the pre-built container images of the GPU cloud, and
thus the identification of the ML framework may be leveraged to
deduce the underlying image. We report some preliminary results
and leave deeper exploration for future work.
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Figure 13: L3-uTLB access patterns during the first 30 seconds of training a
ResNet-50 model on the CIFAR-100 dataset in six different ML frameworks.
The Y-axis displays time (top-down order) and X-axis displays L3-uTLB sets.

Although ML frameworks often use the same libraries to operate
on GPUs (e.g., cuDNN [30]), they each employ unique strategies for
managing models and data within GPU memory. More importantly,
we observe that during the startup phases of ML frameworks, they
exhibit distinct patterns and timings when loading models and
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Figure 14: L3-uTLB access patterns when using PyTorch to train VGG-16 or
ResNet-50 on either CIFAR-100 or SVHN.

data. Consequently, we posit that the early L3-uTLB access patterns
can be exploited to reveal the identities of the ML frameworks in
use. To validate this hypothesis, we conduct experiments on A30’s
MIG-created GPU instances, testing six different ML frameworks:
PyTorch, TensorFlow, MXNet, MATLAB, PaddlePaddle, and Neural
Network Libraries (NNabla). To ensure standardized environments,
we retrieve their latest official container images from Docker Hub
and NVIDIA NGC Hub.

We first compare the initial L3-uTLB access patterns obtained
via Prime+Probe in one GPU instance when using each of the ML
frameworks to train a ResNet-50 model on the CIFAR-100 dataset
in another GPU instance. Despite training the same model on the
same dataset with the same settings, as illustrated in Figure 13, we
can easily discern distinct patterns associated with each framework.
Notably, we find that these patterns are highly consistent, indicating
a strong correlation between the observed L3-uTLB access patterns
and the ML frameworks in use. To evaluate this observation, we
collect 100 examples for each framework and train a ResNet-18
model. We achieve 100% accuracy using 5-fold cross-validation.

We further investigate how consistent such patterns are across
different models and datasets. To this end, we perform experiments
using the VGG-16 model and SVHN dataset apart from the previ-
ously tested ResNet-50 and CIFAR-100. Interestingly, we notice that,
for some frameworks (e.g., PyTorch, as shown in Figure 14), the im-
pacts of using different models and datasets on the initial L3-uTLB
access patterns are not significant, while for others (e.g., TensorFlow,
as shown in Figure 15), the impacts are more pronounced. However,
even in the latter case where the initial access patterns change
to some extent, many key features that help recognize the corre-
sponding frameworks remain. For example, although the patterns
in Figure 15 have apparent differences compared to the one shown
in Figure 13b, we can still easily notice discernible characteristics
that allow us to conclude they are from TensorFlow. We directly
use the model trained on data from the ResNet-50+CIFAR-100 case
for evaluation. Regardless of whether the test access patterns are
obtained when we have VGG-16+CIFAR-100, ResNet-50+SVHN, or
VGG-16+SVHN running on the victim GPU instance, we can still
100% correctly infer the ML framework in use.
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Figure 15: L3-uTLB access patterns when using TensorFlow to train VGG-16
or ResNet-50 on either CIFAR-100 or SVHN.
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7 RELATEDWORK
Many efforts have been made to reveal the microarchitectural de-
tails of modern GPUs over the past decade [14–16, 23, 26, 42, 49, 52].
These works rely on timing side-channel information to infer the
structures of components like TLBs. Even though early studies can
roughly find how TLBs are organized in very old pre-Pascal GPUs,
as demonstrated in [26], many works have failed to discover an L3
TLB existing in Pascal GPUs. Our work shows that prior studies
have also failed to identify the existence of an L3 TLB in post-Pascal
GPUs. In addition, our work is the first one that successfully find
the existence of L1-iTLB in modern GPUs.

Compared with GPU TLBs, CPU TLBs have already been fully
reverse-engineered. In [47], Tatar et al. introduce using TLB inco-
herence to accurately deduce the properties of TLBs in CPU cores.
As illustrated in [47], the awareness of the exact TLB properties can
help accelerate the TLB-based attacks proposed in [9, 10, 17, 48, 56].

Data exfiltration via microarchitectural covert channels has been
studied extensively on the CPU side [8, 11, 12, 22, 46, 53], and lately
this problem on the GPU side started drawing attention. Similar
to our work, Nayak et al. exploit the last-level TLB in Pascal GPUs
to construct a covert channel in [26]. While their work represents
the first attempt to reverse-engineer the TLB set selection hash
functions, we discover that their results may not be fully accurate.
Moreover, they consider only the simplest MPS model of sharing
but not MIG that is advocated for use in cloud computing. In [24],
Naghibijouybari et al. use contention on caches, functional units, or
memory to construct several covert channels between concurrent
kernels. However, all those covert channels proposed in [24] cannot
work across GPU instances of MIG, as the resources on which
contention is created are completely partitioned. In [3], Ahn et al.
propose another GPU covert channel that exploits contention on
shared interconnect in TPC and GPC. Because each GPC belongs
to only one GPU instance as a whole, this covert channel cannot
achieve cross-GPU-instance either. In [54], Xu et al. propose a
countermeasure that detects anomalous contention events and use
partitioning to guard against contention-based side/covert attacks
on GPUs. Yet, this defense becomes unnecessary as MIG imposes
much stronger partitioning.

In [45], Side et al. exploit contention on the host-GPU PCIe bus to
create a covert channel between VMs using virtualized GPUs. In [7],
Dutta et al. achieve data exfiltration from shared GPUs connected
by NVLink. In [6], Dutta et al. also examine how to manipulate the
shared resources between the CPU and the integrated GPU such as
the last-level cache and the ring bus to construct covert channels.
Unlike our work scrutinizing MIG that is specifically designed to
prevent resources from being shared for security, these works focus
on situations in which no isolation is guaranteed in the first place.

Aside from data exfiltration, in [5], Di et al. investigate how to
build a defense against potential performance degradation caused
by contention on the shared TLB with respect to Pascal GPUs. The
defense is based on a software-enforced isolation. However, due to
the inaccuracy in the previous reverse-engineering studies, they
treated the L2 TLB as the last shared level without knowing the
existence of the L3 TLB shared by all the SMs. With the advent of
MIG, such a defense becomes unnecessary.

8 CONCLUSION
In this paper, we have formulated an approach to fully reverse-
engineering the TLB hierarchies of modern GPUs. Using the ap-
proach, we are able to depict a more complete and accurate picture
of GPU TLBs, which facilitates us to discover a design flaw of
NVIDIA MIG that it does not partition the last-level TLB. Exploit-
ing this vulnerability, we have constructed a very reliable covert
channel that enables data exfiltration between MIG-created GPU
instances in real clouds. As MIG isolation has proven imperfect,
more investigations are certainly needed for checking if any other
design vulnerabilities exist.
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A ISOLATION CLAIMS OF NVIDIA MIG
We list some excerpts from NVIDIA documentations to show the
strong isolation claims of MIG. The following excerpt is from [32]:

With MIG, each instance’s processors have separate and isolated paths through
the entire memory system - the on-chip crossbar ports, L2 cache banks,
memory controllers, and DRAM address buses are all assigned uniquely
to an individual instance ...

The following is an excerpt from A100 GPU’s white paper [29]:
MIG is especially beneficial for Cloud Service Providerswho have multi-tenant
use cases, and it ensures one client cannot impact the work or scheduling of other
clients, in addition to providing enhanced security and allowing GPU utilization
guarantees for customers.

B GPU PAGE TABLE DETAILS
As shown in Figure 1, a modern GPU supports multiple page sizes
and a virtual address has 49 bits divided to select a walking path
through a 5-level page table hierarchy. The bits [48 : 47] of a virtual
address are used to index the topmost table of this 5-level hierarchy
called page directory 3 (PD3). A PD3 occupies a normal 4KB page,
and each PD3 entry’s size is 1KB. The tables at the second level are
called PD2, each of which occupies a 4KB page as well. The bits
[46 : 38] are used to index a PD2 to retrieve a PD2 entry whose size
is 8B. The tables at the third level are called PD1, each of which is
also 4KB. The bits [37 : 29] are used to index a PD1 to retrieve a
PD1 entry whose size is 8B. An entry in either PD3, PD2, or PD1 is
valid if its last three least significant bits are ‘010’. The bits [35 : 8]
of a valid entry give the number of 4KB page frame where the table
at the next level resides.

The tables to which PD1 entries point are referred to as PD0 and
they are indexed by the bits [28 : 21] of the virtual address. A PD0
resides in a 4KB page and each PD0 entry has a size of 16B. PD0
entries point to either 2MB huge pages or last-level page tables (PT).
If the least significant bit of a PD0 entry is ‘1’, this entry points to
a 2MB page and its bits [35 : 8] give the 4KB page frame number
to which the 2MB page’s first 4KB part is mapped. Otherwise, a
PD0 entry serves as a dual pointer with its bits [35 : 4] pointing to
a 64KB page PT (valid if its [2 : 0] are ‘010’) and its bits [99 : 72]
pointing to a 4KB page PT (valid if its [66 : 64] are ‘010’). A 64KB
page PT has a size of only 256B and its physical address is derived
via left-shifting the value given by the PD0 entry’s [35 : 4] by 4
bits, while a 4KB page PT has a size of 4KB and the value given by
the entry’s [99 : 72] is the number of 4KB page frame where this
PT resides. A 64KB page PT is indexed by the bits [20 : 16] of the
virtual address, and a 4KB page PT is indexed by the bits [20 : 12]
of the address. An entry in either type of PT has a size of 8B and is
valid if its least significant bit is ‘1’. The bits [35 : 8] of a valid PT
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entry give the number of 4KB page frame to which the 4KB page or
the 64KB page’s first 4KB part is mapped. Apparently, with respect
to 2MB, 64KB, and 4KB pages, the bits [20 : 0], [15 : 0], and [11 : 0]
of the virtual address form the page offset, respectively.

C DUMPING GPU MEMORY
To achieve significantly faster GPU memory dumping, we need to
take advantage of the DMA mechanism. GPUs are equipped with
DMA copy engines for transferring large amounts of data over
the PCIe. To operate a copy engine for the purpose of dumping
the entire GPU memory, we have added a function to the official
NVIDIA GPU driver. Due to the fact that the driver has an internal
hardware abstraction layer (HAL) constructed, we can implement
our GPU memory dumping function in a very generic way without
the need for considering the differences in the copy engines of
different microarchitecture generations.

Specifically, for each generation, the NVIDIA GPU driver has
an implementation of the uvm_ce_hal_struct that has a function
named memcopy() capable of moving data between the host and
GPU memory via DMA. We find that to use the memcopy() func-
tion for our purpose, we first need to allocate some GPU memory
appropriately using the uvm_mem_alloc_vidmem() function and
then map it using the uvm_mem_map_gpu_kernel() function. After
this operation, we are allowed to use the memcopy() function to
access arbitrary GPU physical address range without being limited
to the one allocated and mapped before.

The UVM kernel module creates a device file /dev/nvidia-uvm.
We rely on the ioctl() system call to pass the dumping command
and a physical address range to the modified driver through this
file. The contents sent back to the host memory via DMA will be
written into a file.

D UVM-MANAGED PAGES
A module in the NVIDIA driver is in charge of allocating UVM-
managed pages. The cudaMallocManaged() function registers a
virtual address subspace for UVM use. The UVM module allocates
pages when the GPU accesses addresses in the registered address
space. Although three page sizes are supported (see Figure 1), we
find that UVM actually only allocates 64KB and 2MB pages.

UVM starts with allocating 64KB pages, but it will merge the
64KB pages within a 2MB page into the 2MB page if the residency
reaches certain conditions. For example, if the first 17 or more 64KB
pages in a 2MB page are present on GPU, the page table entries for
these 64KB pages will be purged and replaced with a 2MB entry;
but if just the first 16 64KB pages are used, the merging operation
will not be triggered. We find that some other residency patterns
with less than 17 pages can also trigger the merging. For instance,
if every other 64KB page is used (i.e., 16 ones as there are 32 64KB
pages in a 2MB page), the merging will also happen.

E MORE REVERSE-ENGINEERING DETAILS
To check if the TLB hierarchy is fully filled due to accessing a set of
pages, we modify the address mappings for the first a few pages in
the set. The newly mapped physical page frames have a predefined
value. If the predefined value is read out, it means that the stale
translations for these pages are evicted and new ones are loaded
by the page table walker.

As GPU code and data pages are not distinguishable from the
perspective of their page table entries, we are allowed to directly
write anything on a code page as long aswe know the corresponding
virtual address. Yet, unlike those data pages allocated by CUDA
APIs whose virtual addresses are given, there is no straightforward
way to learn the virtual address of a kernel function used in the
GPU context. We have formulated a solution to the problem that
is to identify the code page frame holding the kernel function in
the dumped GPU memory and deduce the corresponding virtual
address from the extracted page table. After finding the virtual
address 𝐴0 of the branch instruction, we can make 𝐴1 be its target
by writing its offset part with 𝐴1 − (𝐴0 + 16).

F SET SELECTION FUNCTIONS OF TURING

44 43 41 ...4546 42 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 204748

(a) XOR-54620 is used for indexing L2-uTLB when using 64KB pages.

44 43 41 ...4546 42 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 204748

(b) XOR-74620 is used for indexing L3-uTLB when using 64KB pages.

44 43 41 ...4546 42 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 204748

(c) XOR-54625 is used for indexing L2-uTLB when using 2MB pages.

44 43 41 ...4546 42 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 204748

(d) XOR-74625 is used for indexing L3-uTLB when using 2MB pages.

Figure 16: TLB set selection hash functions used by Turing GPUs.

G PERFORMANCE DEGRADATION
Given the large L2-uTLB reach, performance degradation attacks
may not be easy to achieve under normal circumstances. Yet, if 64KB
pages are primarily used, it can trigger numerous L3-uTLB accesses,
and attacker on another GPU instance can repeatedly evict the L3-
uTLB to conduct performance degradation attacks. A common case
where 64KB pages are utilized without merging is when GPUs are
used for graphics rendering. However, graphics rendering APIs (e.g.,
Vulkan and OpenGL) are currently not supported in MIG-created
instances (but supported in vGPU-created instances). Even so, there
are still cases where 64KB pages remain unmerged in MIG-created
GPU instances, and a simple one is when a program sparsely uses
UVM address space on the GPU side. For example, we create an
array of 65536 objects in UVM on the CPU side, but only reference
3700 of them on the GPU side, with the addresses of each referenced
object pair separated by at least 0x100000. When we traverse these
objects 2000 times in the absence of a malicious program sweeping
the L3-uTLB, it takes 6.34 seconds. However, in the presence of such
continuous sweeping, it takes 8.11 seconds, which is 28% slower
than before. This slowdown is very consistent when the objects are
traversed for a varying number of iterations.
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