
Understanding and Characterizing Side Channels

Exploiting Phase Change Memories

Md Hafizul Islam Chowdhuryy, Rickard Ewetz, Amro Awad and Fan Yao

Abstract—Recent advances in non-volatile memory (NVM), together with their
performance-optimized architectural schemes, position NVMs as promising building blocks for
future main memory. However, the security of such techniques has not been explored. This
article performs the first study on information leakage threats in phase change memories (PCM).
We propose an attack framework, R-SAW, that systematically investigates side channel
vulnerabilities in representative read techniques under inter-line and intra-line interleaving for
multi-level cells. Our evaluation shows that the new side channels can accurately leak program
secrets (e.g., crypto keys) and are extremely robust to noise. Our work highlights the need to
understand microarchitecture security for emerging memory devices.

1. Introduction
Recent developments in microarchitecture at-

tacks have raised significant concerns for infor-
mation security. Particularly, a burgeoning of side
channels has been demonstrated in a plethora of
processor hardware components [1], [2]. These
exploitations highlight the fact that hardware
performance optimizations without proper con-
sideration of security often open new venues
for information leakage. As new hardware com-
ponents and microarchitecture optimizations are
more rapidly integrated into modern computing
systems, understanding their security impacts is
critical to ensure secure-by-design solutions.

Emerging memory technologies have become
major contenders for main memory with their
advantage in non-volatility, outstanding capacity,
and superior energy efficiency [3]. Phase chase
memory (PCM) is a promising class of non-
volatile memories (NVMs) due to its maturity and
DRAM-comparable performance [4]. To enable
the efficient integration of PCM in computing sys-
tems, many architectural schemes for optimizing
PCM main memory have been proposed in recent
years [4], [5], [6]. While tremendous efforts have
been put into studying the microarchitecture se-
curity of on-chip resources, information leakage

vulnerability in architectural schemes for PCM
has not been well understood.

This article demonstrates the first work on
investigating side channels in future systems
equipped with phase change memory. We sys-
tematically surveyed state-of-the-art read tech-
niques for PCM operating under the multi-level
cell (MLC) mode, a widely-utilized configura-
tion that increases memory capacity. We identify
that mainstream architectural schemes for PCM
read commonly leverage the read asymmetry in
MLC cells for performance optimization, which
allows highly variable program executions due
to access to fast/slow data regions. Accordingly,
we propose a novel side channel framework–
R-SAW–that aims to exfiltrate program secrets
by correlating victims’ execution times with the
PCM access patterns. We present two variants
of side channel attacks: 1) R-SAW-I that targets
memory read technique with PCM inter-line data
striping, and 2) R-SAW-IA exploiting PCM ac-
cesses under intra-line data striping. Our evalua-
tion demonstrates that the newly discovered side
channels are particularly dangerous: First, such
attack can observe timing variance for victim’s
execution even under the same execution path
(e.g., inferring AES keys); Second, R-SAW is

Special Issue on Security and Privacy-Preserving Execution Environments Published by the IEEE Computer Society © 202X IEEE 1

able to carry out information leakage based on
the sub-cache line access granularity, making ex-
isting mitigations against cache line level exploits
ineffective. Our work provides novel insights for
future research in securing emerging NVM-based
systems against side channels. In contrast to our
previous work [7], the major contributions of this
article are:

• We systematically model the architectural
read technique under PCM intra-line inter-
leaving scheme and identify a new R-SAW
side channel (R-SAW-IA) exploiting timing
variations due to sub-memory block access
in PCM.

• We present possible code patterns that are
resistant to side channels observing at the
memory block granularity while still ex-
ploitable via R-SAW-IA. We evaluate the
attack with the prototyped victim (based on
RSA) and show that R-SAW-IA can accu-
rately unveil secretive data from the victim.

• We perform additional characterizations for
both R-SAW-I and R-SAW-IA and show
that not only the proposed side channels
are independent of other on-chip structures
that contributes to timing observation (i.e.,
caches), but they are also more robust to
noises. We further extend the discussion on
the security of PCM with side channels.

2. Background and Related Works

2.1. Phase Change Memories
PCM devices are built with phase-change ma-

terials that can switch between high resistance
amorphous state and low resistance crystalline
state. Due to the fact that the programmable
resistance range is considerably large, it is pos-
sible to store multiple bits by encoding more
than two resistance levels in a single PCM cell
(i.e., multi-level cell or MLC), which signifi-
cantly increases the device capacity (shown in
Figure 1). Accessing PCM in MLC mode, how-
ever, brings additional complexity to the cell
sensing operation. Particularly, the state-of-the-art
MLC sensing technique (for reads) leverages an
iterative process where the resistance in one cell
is compared to multiple reference values (one at a
time) to decode each individual bit from the order
of MSB (Most Significant Bit) to LSB (Least

…>

ref.1

MSB
‘1’ or ‘0’

sensed resist.

>

ref.N

LSB
‘1’ or ‘0’

sensed resist.

MSB readC
e

ll
d

is
tr

ib
u

tio
n

‘11’ ‘10’ ‘01’ ‘00’

reference resistance

Resistance
LSB read

(a) (b)

Figure 1: MLC PCM cell resistance range (Left)
and the MLC read technique (Right).

MSB

LSB

…
b0

b1

b2 b4 b6 b8 b10

b3 b5 b7 b9 b11

b510

b511

b508

b509

(a) Bit striping

(b) Inter-line striping

CL

CLh

CLl

…b0 b1 b255

b511

(c) Intra-line striping

b257b256

…b0 b1 b255

b511b257b256

pCLh

cache line 0 cache line 1

pCLl

MLC
PCM
Cell

…
b0

b1

b2 b4 b6 b8 b10

b3 b5 b7 b9 b11

b510

b511

b508

b509

Figure 2: Memory block bits layout with PCM:
(a) default bit organization in a cache line (CL);
(b) inter-line striping with MSB-only CL (CLh)
and LSB-only CL (CLl); and (c) intra-line
striping with partial cache line (i.e., first half)
in MSBs (pCLh) and the other half in LSBs
(pCLl).

Significant Bit) (Figure 1).
With iterative sensing, it generally takes

longer to derive the lower bits in an MLC cell
than the higher ones–read asymmetry. For in-
stance, in 2-bit MLCs, reading from LSBs is
about 2× slower than that from MSB. As memory
load is in the critical path, it is desirable to
enable the decoupling of the MSB accesses with
shorter latencies from the LSB accesses with
longer latencies. Towards this end, the architec-
ture community has proposed several data striping
schemes and necessary architecture support to
utilize the PCM read asymmetry for performance
optimizations [6], [5]. Figure 2 illustrates the rep-
resentative data interleaving designs including 1)
bit-interleaving where consecutive cache line bits
are mapped to MLC cell bits sequentially (non-
optimized scheme), 2) inter-line interleaving with
consecutive odd and even lines stored in MSB bits
and LSB bits (speeding up odd line accesses),
respectively ([5]). 3) intra-line interleaving in
which one-half of the line maps to MSBs and the

2 Special Issue on Security and Privacy-Preserving Execution Environments

other half to LSBs (speeding up access of half of
a memory block) [6].

2.2. Microarchitecture Side Channels
Microarchitecture side channel is a form of infor-
mation leakage attack where illicit communica-
tion is built by an adversary through modulating
microarchitecture states that influence the timings
of instruction executions (i.e., latency) either ob-
served through an attacker or the victim process.
A variety of on-chip hardware components have
been shown to be vulnerable to side channel
exploitation [2], [8], [9]. Timing channels can
be categorized into two classes: 1) active timing
channel where an adversary intrusively perturbs
states of hardware components (e.g., evicting
victim’s cache line), and 2) passive timing chan-
nel where the attacker only needs to passively
observe the execution times of the victim pro-
cess. While existing protection mechanisms (i.e.,
randomized cache [1] and resource partitioning)
can defeat many of these attacks, new avenues of
exploitation open up [7].

3. Threat Model and Assumptions
We assume a victim is running processes on

machines equipped with PCM as the main mem-
ory. Architectural optimizations are integrated to
enhance PCM memory performance by support-
ing various data-interleaving schemes. The adver-
sary can either co-run a userspace process or in-
teract with the victim’s process through software
interfaces (e.g., serving client’s requests). Our
investigation focuses on passive timing channels
where the attacker monitors externally-observable
execution time of the victim and attempts to
infer the secretive information. To analyze the
vulnerabilities, we model a system with PCM
main memories with key architecture parameters
in the gem5 simulator as shown in Table 1.

4. Side Channels in Inter-line Striped
Phase Change Memories
4.1. Architecture Support for PCM with
Inter-line Interleaving

We thoroughly model PCM-based systems
that integrate the state-of-the-art inter-line strip-
ing bit arrangements in MLC PCM [5]. In this
scheme, the memory controller maps consecu-
tive memory blocks in MSBs (CLh) and LSBs

Hardware Configurations

Processor Quad-core x86 CPU, Out-of-order execution
L1 I/D-Cache Private, 32KB, 2-way, 1-cycle hit
L2 Cache Private, 4MB, 16-way, 10-cycle hit
DRAM Cache Shared, 32MB, 16-way, 50-cycle hit
Mem. Ctrl. 64 RD & WT queue, FR-FCFS, open-row

PCM Memory 8GB, single channel, 2 ranks/channel (Local)
16GB, dual channel, 2 ranks/channel (Target)

PCM Timing 2-bit MLC, MSB read: 28ns, LSB read: 48ns

Table 1: Architecture configurations.

(CLl) alternatively. Hence, in one pair of memory
blocks, the first block is mapped entirely in the
MSB and the second block is mapped to LSB
of the same group of PCM cells. Using this bit
organization, the CLh reads are serviced quickly
by the memory controller. Additionally, when
servicing reads to CLl blocks, the controller
searches for the paired CLh block in cache, and
if hit, the CLl read is performed in one iteration
of sensing as well.

4.2. Case Study: Attacking AES
We first demonstrate R-SAW-I, an attack that

can recover keys from AES cryptographic system
by exploiting inter-line read latency variations.
Specifically, OpenSSL’s implementation of AES-
128 performs ten rounds of transformation using
five T-tables (T0−4). The specific entry accessed
in tables depends on the corresponding round key
byte and the intermediate input byte.

As the total number of T-table accesses in
AES is fixed during each encryption run, a di-
rect correlation between CLl access ratio and
encryption latency may exist. Since T-table access
addresses are reliant on the round key, we con-
jecture that when performing encryptions, each
particular value of key bytes will result in de-
terministic PCM access patterns. Based on this
conjecture, an attacker can extract the exact value
of key bytes by performing correlation analysis
with encryption latencies for all possible 256
values of the key byte. R-SAW-I comprises the
following steps:

PCM Access Pattern Profiling on AES. During
this stage, the attacker compiles memory-pattern
vectors (MPVs) which are later used to determine
specific key bytes in victim. The attacker first
instruments the AES program to detect CLh and
CLl line accesses during encryption. Then it
performs a sufficient number of encryptions on

XXX/XXXX 202X 3

0 50 100 150 200 250
Possible Value of Key Bytes

k10 0
k10 15

K0 = 16
K2 = 247

K3 = 7 K4 = 105
K5 = 236 K6 = 251

K7 = 142
K8 = 82K9 = 17 K10 = 250

K11 = 167K12 = 38

K13 = 127 K14 = 184K15 = 22

K1 = 219
0.3

0.0
0.3
0.6
0.9
1.2

Figure 3: A complete recovery of the final round key. Each row denotes the correlation value
distribution for one key byte.

a local machine, using random keys and plain-
texts, to generate PCM access traces. For each
encryption run, a sample point S = (C,K10, p) is
collected, recording the corresponding ciphertext
C, last round key K10 and the percentage of
CLl access p. These samples are then categorized
based on every unique combination of k10

i and
Ci for each i. Particularly, we arrange all sample
points with K10

i = u and Ci = w (u and
w ∈ [0, 255]) as a group S(i, u, w) for each
value of ith key byte. This S(i, u, w) encodes the
statistical PCM access pattern for specific values
of ith key byte and ciphertext byte. Finally, we
calculate the P

w

(i,u) by taking average of CLl

access percentage in S(i, u, w). The MPV for ith

byte is subsequently defined as:

M(i, u) = {P 0

(i,u), P
1

(i,u), ..., P
255

(i,u)} (1)

Victim’s Execution Time Monitoring. The at-
tacker triggers AES encryption on victim system
using random plaintexts and records S = (C, l),
where C is the ciphertext, and l is the execution
latency. Similar to the profile step, the collected
samples are organized such that for each ith

ciphertext byte, the S records for the same Ci

are grouped as S(i,x, w), here x = K10
i is the

unknown key (fixed). Subsequently, the attacker
builds an encryption-timing vector (ETV) for
each byte of last round key by calculating L

w

(i,x)

based on average latency for each S(i,x, w). The
ETV captures the statistical encryption latency
pattern for the unknown value of ith key byte,
and is denoted as:

T (i,x) = {L0

(i,x), L
1

(i,x), ..., L
255

(i,x)} (2)

AES Key Recovery through Correlation Anal-
ysis. After the ETV collection (T (i,x)) is com-
pleted, the attacker performs correlation analysis

of ETV with MPVs to infer the secret key value.
We expect that an outstandingly higher correla-
tion between M(i, u) and T (i,x) will exist for
x = u. We represent this procedure as:

K10
i = argmax

u
R(M(i, u), T (i,x)) (3)

Based on this, each last round key byte can
be inferred by finding the u that results in the
highest correlation with x for that specific byte.
Once all bytes of last round key are inferred, the
original key can be recovered [8].

4.3. Evaluation
We first generate MPVs using 30M encryp-

tions in local system. Additionally, we perform
128K encryptions in the victim to generate the
ETV. From our profiling result, we observe that
MPV for each key byte (M(i, u)) correspond-
ing to different values is differentiable. Figure 3
shows the correlation analysis of ETVs for each
of the 16 key bytes. We observe that for each
key byte, there exists an obvious outlier repre-
senting strong and highest correlation, which is
the correct key byte value. We run this for 4000
different victim key settings and observe R-SAW-
I achieves 98.5% accuracy.

5. Side Channels in Intra-line Striped
Phase Change Memories
5.1. Architecture Support for PCM with
Intra-line Interleaving

We model PCM intra-line optimization as
proposed in [6]. Specifically, bits in each memory
block are organized in such a way that the first
half of the block (pCLh in Figure 2c) is stored
in only the MSB of PCM cells, and the second
half (pCLl) in the LSB of the same PCM cells.
When the processor loads a memory block from
main memory, the pCLh read finishes faster and

4 Special Issue on Security and Privacy-Preserving Execution Environments

pCLh

Secret = 1
Secret = 0

Load

Secret = 0

Secret = 1

pCLl

pCLh

pCLl

pCLh

pCLl

Figure 4: Intra-line access for secret-dependent
control flow (Left) and data flow (Right).

can be ready before the pCLl (See Section 2).
To optimize performance, the memory controller
utilizes early forwarding of pCLh to the re-
questing core while only marking the outstanding
cache miss as completed when pCLl arrives. This
optimization improves program execution time by
opportunistically hiding the LSB read latency.

5.2. Potential Side Channel Vulnerabilities
Since intra-line optimization can forward

pCLh earlier than pCLl, executions requiring
pCLh can progress while waiting for pCLl. At
runtime, software can issue memory access that
either only maps to pCLh or pCLl of a memory
block, leading to variable timings. To understand
the potential impact of intra-line access pattern,
we design a microbenchmark that reads from
arbitrary halves of memory blocks. By controlling
pCLh access ratio, we observe program exe-
cution time increases linearly with pCLl. We
also observe that this timing correlation only
exists with the presence of the intra-line strip-
ing optimization. We illustrate two representative
program patterns that are potentially exploitable
as shown in Figure 4.
• Sub-cache line control flow divergence: In

this pattern, a secret dependent branch (in-
side a pCLl) can transfer the control flow
to either the pCLh or pCLl in the next
memory block (Figure 4a). In such cases,
the taken path may skip pCLh and diverge
the control flow to pCLl, whereas the not-
taken path will execute through pCLh. Since
the taken path needs to execute instruc-
tions belonging to pCLl on first access,
this exposes intra-cache line level latency
variations in program execution time. The
PCM read latency variations observed in
this case are typically much higher than
the execution time differences due to the
difference between these two paths in terms
of instructions.

• Sub-cache line data flow transfer: In this
vulnerable code, secret-dependent memory
access can index to either a pCLh or pCLl

of the same memory block (Figure 4b).
Based on the execution latency, it is possible
to determine which half line is indexed into,
thus revealing the secret value.

1 highCtr ← 0
2 lowCtr ← 0
3
4 i f s = 0
5 lowCtr ++
6 e l s e i f s = 1

7 highCtr ++

Snippet 1: Element
counter.

1 x ← 1

2 y ← 1
3 f o r i← e− 1 to 0 {
4 x ← sqr(x)

5 x ← mod(x,m)
6 y ← mul(x, b)

7 y ← mod(y,m)

8 i f ei = 1
9 x ← y

10 }

Snippet 2: Square-and-
multiply-always.

Since the timing variance corresponds to dif-
ferent accesses within a memory block, such
vulnerability can manifest in cases where pro-
grams do not exhibit differentiable activities at
cache line granularity (e.g., classical cache attacks
exploiting hit/miss [2]). Code Snippets 1 and 2
(explained later) demonstrate two representative
code gadgets corresponding to the vulnerabilities
in Figure 4. Specifically, Code Snippet 1 illus-
trates a secret-dependent data access to different
halves of memory block. As shown in the gadget,
if both variables highCtr and lowCtr belong
to the same cache line, this gadget does not
have any cache line level vulnerability. However,
intra-cache line level vulnerability still exists in
case these two data access map to a pCLh

and pCLh, respectively. Note that such gadgets
are common in image processing applications
(e.g., Libjpeg), where transformation of images
(memory accesses) often depends on the values
of neighboring pixel values.

5.3. Case Study
We present R-SAW-IA, a side channel utiliz-

ing intra-cache line level access pattern. At a high
level, R-SAW-IA profiles the execution latency
of the target application for each possible secret
value (i.e., offline profiling stage). Once profiling
is completed, the attacker triggers victim execu-
tion and records the execution times. Finally, a
correlation analysis between the victim execution
time with the attacker’s profile data leaks the

XXX/XXXX 202X 5

0 1000 2000
of Set Bits

20000
22500
25000
27500
30000
32500
35000
37500
40000

En
cr

yp
tio

n
La

te
nc

y

(a) Intra-line interleaving

0 1000 2000
of Set Bits

20000
22500
25000
27500
30000
32500
35000
37500
40000

En
cr

yp
tio

n
La

te
nc

y

(b) No interleaving

Figure 5: Total program execution latency as a
function of # of bits ‘1’s in the exponent for Code
Snippet 2.

secretive information. To demonstrate R-SAW-
IA, we analyze the modular exponentiation algo-
rithm using square-and-multiply-always [10] for
GnuPG’s RSA implementation as shown in Code
Snippet 2. Specifically, it performs multiplication
regardless of the value of the current exponent bit
and the result of multiplication operation is only
kept if the exponent bit is ‘1’. The implementation
was proposed to defeat cache timing channels that
identify cache line access due to the invocation
of the multiplication operations in the original
RSA algorithm [2]. Importantly, although there
is a branch (Line 8) that depends on the secret
bit, the branch block is typically very small and
can be placed within the same cache line as the
non-secret dependent instructions before it (i.e.,
line 7 and above). However, the secret dependent
code can still spawn over half of cache line (i.e.,
LSB half) similar to the case in Figure 4a. In
this case, although such control flow path cannot
be observed from caches (as the same cache
lines would be accessed in either direction), the
sub-memory block level observation in intra-line
optimization remains. The exploitation steps are:

Profiling of Execution Latency. In this step, at-
tacker runs RSA encryptions with different values
of e, and collects the execution latency for each.
The attacker then creates an execution latency
profile corresponding to each number of bit ‘1’s
in the exponent (i.e., ne). After this stage, the
attacker has an execution latency vector (ELV)
that captures the execution time signature of the
victim process corresponding to each ne in e.

Collecting Victim Latency Traces. In this step,

25 50 75 100 125 150
of Samples Per Key (K)

0%

20%

40%

60%

80%

100%

Su
cc

es
s R

at
e

R-SAW-I attack
Cache attack

(a) SR vs sample size.

0
16

.6
33

.3 50
66

.6
83

.3
10

0

Relative Noise Level (%)

0%

20%

40%

60%

80%

100%

Su
cc

es
s R

at
e

R-SAW-I attack
Cache attack

(b) SR vs system noise

Figure 6: Comparative study of R-SAW-I and
cache-based attack.

the attacker triggers victim execution which runs
RSA encryption with an unknown e. Attacker
measures the execution latency corresponding to
this unknown exponent.
RSA Exponent Secret Recovery using Correla-
tion Analysis. The attacker performs correlation
analysis of the victim latency traces against the
profiled ELV. Since the ne is representative of
additional pCLl access during RSA encryption,
the victim program execution time is a function
of the unknown ne. For the guessed ne whose
ELV results in the highest correlation with victim
traces is determined to be the number of bits ‘1’s
in victim’s exponent.

5.4. Evaluation
We evaluate R-SAW-IA by launching the at-

tack based on Code Snippet 2. Note that as the
attacker observes the entire program execution
time of the victim, the timing observation col-
lectively includes all the iterations in the loop.
Figure 5a shows that indeed program execution
time increases linearly with the increase of the
ne value. In contrast, when intra-line striping
optimization is not enabled, such correlation does
not exist (as illustrated in Figure 5b). We collect
victim encryption latency traces for 1000 different
values of exponent e. R-SAW-IA can determine
the ne in each of them with 93% accuracy.

6. Characterizing Robustness of PCM
Side Channels
6.1. Characterization of R-SAW-I

Sensitivity to Sample Size: We evaluate the Suc-
cess Rate (SR) by changing the number of sam-
ples taken from victim execution. Figure 6a illus-

6 Special Issue on Security and Privacy-Preserving Execution Environments

trates that by increasing the number of samples
per key from 25K to 140K, both R-SAW-I and
cache-based attacks have improvements over SR.
However, we observe that given a fixed sample
size, R-SAW-I consistently attains higher SR
compared to the cache-based attack.

Resiliency to System Noise: Along with the vic-
tim encryption process, we run a multi-threaded
noise injection process that continuously accesses
main memory. By varying the frequency of mem-
ory accesses, we can control the noise level.
We run both attacks under each noise level and
compute SR for 100 AES keys (with 128K
sample points each). Figure 6b shows that SR
for cache-based attack reduces drastically with
the increase in noise level. Particularly, there is
a sharp decrease of SR when the noise level is
higher than 40%. In contrast, R-SAW-I can main-
tain 81% accuracy under the highest noise (i.e.,
non-stop memory reads). This is because while
cache-based attack relies on cache hit activities
(i.e., if both the ith and jth key bytes use the
same T4 entry, the encryption latency is lower
because of cache hit), and cache can be heavily
polluted becuase of the additional memory reads
due to noise. In contrast, R-SAW-I relies on PCM
access pattern (i.e., percentage of CLl reads)
that remains unaffected by the additional memory
accesses.

Impact of On-chip Caching: We model systems
that either: a) do not cache memory accesses, thus
only keeping PCM access-based leakage; or b) do
not integrate PCM line striping, thus only keeping
cache-based leakage. In Figure 6a, the error bar
on R-SAW-I attack represents R-SAW-I SR due
to PCM memory access pattern only (which is
only 1%-4% lower than default), and the error
bar on Cache attack represents the SR due to
cache activity only (which is 2%-9% lower than
default). As expected, R-SAW-I attack is possible
due to secret-dependent PCM access pattern, and
it is not influenced by caches.

6.2. Characterization of R-SAW-IA
We characterize R-SAW-IA by evaluating it

with the chosen-plaintext attack on RSA, leaking
the number of bits ‘1’s in the secret exponent.
We choose 100 plaintexts and generate the profile
ELVs from 30M encryptions, as discussed in Sec-

0 500 1000 1500 2000
Possible value of ne

-0.2

0

0.2

0.4

Co
rre

la
tio

n ne = 1950

(a) Correlation between ELV and victim
encryption latency trace.

0
16

.6
33

.3 50
66

.6
83

.3
10

0

Relative Noise Level (%)

0%

25%

50%

75%

100%

Su
cc

es
s R

at
e

Accuracy
Top-3 Acc.

(b) Success rates vs sys-
tem noise

Figure 7: R-SAW-IA attack analysis.

tion 5.3. Then, we collect 1000 victim encryption
latency traces for each of the 100 plaintexts.
Finally, we run correlation analysis of the victim
trace against the ELVs. For example, Figure 7a
illustrates that the correlation value is the highest
when ne is 1950, which represents the correct ne

in victim. This highlights the strong correlation
between ne and overall encryption latency that is
directly caused by intra-line optimization of PCM
reads.

Impact of System Noise: Similar to the R-SAW-
I, we define 6 levels of system noises along with
the noise-free configuration to quantify the noise
resiliency of R-SAW-IA. Figure 7b shows that
even with the highest degree of noise, R-SAW-IA
observes a reasonable 78% top-3 accuracy (i.e.,
the correct ne is in one of the top 3 correlations).
As the pCLh to pCLl access ratio remains
unaffected by the additional memory accesses, R-
SAW-IA is less susceptible to noise. We note that
with intra-line interleaving, regardless of which
half of the memory block is accessed, both pCLh

and pCLl reads are performed in memory to
return the complete memory block to the proces-
sor. Hence, the performance benefits of intra-line
interleaving mainly come from early execution
of instructions utilizing pCLh. In contrast, with
inter-line interleaving, memory reads can be ter-
minated early if CLh is read, which results in
both early execution of instructions and higher
memory throughput for applications with CLh

reads. This results in R-SAW-I observing higher
degree of read latency variations compared to R-
SAW-IA. Nevertheless, R-SAW-IA is still capable
of exploiting the intra-line latency variations with
high noise resiliency.

XXX/XXXX 202X 7

7. Discussions of Mitigation
Randomized PCM Data Mapping. One poten-
tial way to mitigate the attack is to randomize
memory block mapping to MSBs and LSBs us-
ing architectural support in memory controller.
For inter-line striping, MSBs and LSBs can be
remapped to new locations on the same page
using a permutation seed generated at runtime.
For intra-line striping, instead of mapping first
half of a block to MSB and second half to
LSB, they can be remapped to different halves
in the same block randomly. This will make the
memory-access pattern randomized, breaking the
correlation with execution latency. However, this
scheme might require frequent changes of the
randomization seed to prevent potential reverse-
engineering of the mapping.

Software Hardening. Software optimization is
also be one potential mitigation. Prior research
has investigated rewriting the software to ensure
information safety (e.g., preventing secret depen-
dent branching), which can be adopted to prevent
R-SAW. Specifically, security-critical sections in
applications can be allocated to memory locations
with similar latency groups to prevent secret-
dependent PCM access latency. However, adapt-
ing such PCM latency region-aware mapping
techniques in software can introduce non-trivial
complexity in software design.

8. Conclusion
In this paper, we investigate the information

leakage vulnerabilities in MLC PCM systems.
We find that PCM access techniques leveraging
read asymmetry in multi-level cells introduce new
side channel attacks. We present two variants of
attack, targeting both inter-line and intra-line in-
terleaving optimizations. Our work highlights the
importance of understanding security in systems
integrated with emerging memory technologies
and motivates the need to architect secure-by-
design PCM main memories in the future.

REFERENCES
1. F. Liu and R. B. Lee, “Random fill cache architecture,” in

IEEE MICRO, 2014, pp. 203–215.

2. Y. Yarom and K. Falkner, “FLUSH+ RELOAD: a high

resolution, low noise, l3 cache side-channel attack,” in

USENIX Security, 2014, pp. 719–732.

3. M. H. I. Chowdhuryy, M. R. H. Rashed, A. Awad,

R. Ewetz, and F. Yao, “Ladder: Architecting content and

location-aware writes for crossbar resistive memories,”

in IEEE/ACM MICRO, 2021, pp. 117–130.

4. B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting

phase change memory as a scalable dram alternative,”

in IEEE/ACM ISCA, 2009, pp. 2–13.

5. M. Hoseinzadeh, M. Arjomand, and H. Sarbazi-Azad,

“Reducing access latency of mlc pcms through line

striping,” in IEEE/ACM ISCA, 2014, pp. 277–288.

6. M. Arjomand, A. Jadidi, M. T. Kandemir, A. Sivasub-

ramaniam, and C. R. Das, “HL-PCM: MLC PCM main

memory with accelerated read,” IEEE TPDS, vol. 28,

no. 11, pp. 3188–3200, 2017.

7. M. H. I. Chowdhuryy, R. Ewetz, A. Awad, and F. Yao,

“Seeds of seed:r-saw: New side channels exploiting

read asymmetry in mlc phase change memories,” in

IEEE SEED, 2021.

8. J. Bonneau and I. Mironov, “Cache-collision timing at-

tacks against aes,” in Springer CHES, 2006, pp. 201–

215.

9. M. H. I. Chowdhuryy and F. Yao, “Leaking secrets

through modern branch predictor in the speculative

world,” IEEE TC, 2021.

10. GPG, “Mitigate a flush+reload cache

attack on rsa secret exponents.” 2013,

https://github.com/gpg/libgcrypt/commit/e2202ff2b.

Md Hafizul Islam Chowdhuryy is currently a
Ph.D. student at the University of Central Florida.
His research interest lies in computer architec-
ture with a focus on security. Contact him at:
reyad@knights.ucf.edu.

Rickard Ewetz is an associate professor in de-
partment of ECE at the University of Central
Florida. His research interests include physical design
and computer-aided design for in-memory comput-
ing using emerging technologies. Contact him at:
Rickard.Ewetz@ucf.edu.

Amro Awad is an assistant professor in the ECE
Department of NC State University. His research
interests include secure hardware architectures and
memory systems. Contact him at: ajawad@ncsu.edu.

Fan Yao is an assistant professor of ECE at the Uni-
versity of Central Florida. His research interests are
in the areas of computer architecture, hardware and
system security. Contact him at: fan.yao@ucf.edu.

8 Special Issue on Security and Privacy-Preserving Execution Environments

	Introduction
	Background and Related Works
	Phase Change Memories
	Microarchitecture Side Channels

	Threat Model and Assumptions
	Side Channels in Inter-line Striped Phase Change Memories
	Architecture Support for PCM with Inter-line Interleaving
	Case Study: Attacking AES
	Evaluation

	Side Channels in Intra-line Striped Phase Change Memories
	Architecture Support for PCM with Intra-line Interleaving
	Potential Side Channel Vulnerabilities
	Case Study
	Evaluation

	Characterizing Robustness of PCM Side Channels
	Characterization of R-SAW-I
	Characterization of R-SAW-IA

	Discussions of Mitigation
	Conclusion
	REFERENCES
	Biographies
	Md Hafizul Islam Chowdhuryy
	Rickard Ewetz
	Amro Awad
	Fan Yao

