
D-Shield: Enabling Processor-side Encryption and
Integrity Verification for Secure NVMe Drives

Md Hafizul Islam Chowdhuryy1, Myoungsoo Jung2, Fan Yao1 and Amro Awad3

1University of Central Florida 2KAIST 3North Carolina State University
reyad@knights.ucf.edu, mj@camelab.org, fan.yao@ucf.edu, ajawad@ncsu.edu

Abstract—Ensuring the confidentiality and integrity of data
stored in storage disks is essential to protect users’ sensitive and
private data. Recent developments of hardware-based attacks have
motivated the need to secure storage data not only at rest but also
in transit. Unfortunately, existing techniques such as software-
based disk encryption and hardware-based self-encrypting disks
fail to offer such comprehensive protection in today’s adversarial
settings. With the advances of NVMe SSDs promising ultra-
low I/O latencies and high parallelism, architecting a storage
subsystem that ensures the security of data storage in fast disks
without adversely sacrificing their performance is critical.

In this paper, we present D-Shield, a processor-side secure
framework to holistically protect NVMe storage data confiden-
tiality and integrity with low overheads. D-Shield integrates a
novel DMA Interception Engine that allows the processor to
perform security metadata maintenance and data protection
without any modification to the NVMe protocol and NVMe disks.
We further propose optimized D-Shield schemes that minimize
decryption/re-encryption overheads for data transfer crossing
security domains and utilize efficient in-memory caching of storage
metadata to further boost system performance. We implement
D-Shield prototypes and evaluate their efficacy using a set of
synthetic and real-world benchmarks. Our results show that
D-Shield can introduce up to 17× speedup for I/O intensive
workloads compared to software-based protection schemes. For
server-class database and graph applications, D-Shield achieves
up to 96% higher throughput over software-based encryption and
integrity checking mechanisms, while providing strong security
guarantee against off-chip storage attacks. Meanwhile, D-Shield
shows only 6% overhead on effective performance on real-world
workloads and has modest in-storage metadata overhead and
on-chip hardware cost.

I. INTRODUCTION

With all the challenges to secure a trustworthy supply chain
of hardware devices, there is a clear trend for limiting the trust
boundary to as minimum number of hardware components
inside the system as possible [28], [45]. The issue is further
exacerbated with the proliferation of cloud, and edge computing,
where users have minimal or zero knowledge about the vendors
of motherboards, memory modules, and storage devices, and
thus can risk data breaches by hardware trojans, malicious
devices, or even adversarial system maintainers and physical
attackers. As a result, processor vendors rightfully start to
support secure environments where the confidentiality and
integrity of data are protected when leaving the processor chip.
A major objective of such secure processors is to protect the
integrity and confidentiality of data when written to off-chip
storage.

While memory security has been a major focus of secure
processors [28], [45], storage security is traditionally assumed
in a classical context. In particular, the protection of storage
data is typically implemented in software. Such approaches
are acceptable for slow storage devices with access latencies
in the scale of milliseconds [65] where the corresponding
software overhead is only a marginal component. However,
this is no longer the case for emerging ultra-low latency storage
devices such as Intel’s Optane Solid-State Drives (SSDs) [43].
These devices feature microseconds-range access latency and
are expected to offer even faster I/Os with the unprecedented
maturity of various NVM technologies [40], [59], [70]. In such
fast storage devices, the overheads of security enforcement
mechanisms in software can be significant: our investigation
on real system shows that for a fast SSD device interfaced
via state-of-the-art NVMe protocol, the overheads can be up
to 4× (for software encryption) or up to 34× (for software
encryption with integrity protection). On the other hand, disk
vendors currently provide self-contained approaches for disk
data protection. Commercial self-encrypting disk (SED) [3],
[30], [50], [51] performs data encryption with specialized
hardware components in the disk drive. Note that SED is
designed to protect the security of the storage data at rest,
while the data in-transit during I/O requests and responses
are still in plaintext, making it vulnerable to attackers with
physical access to the I/O bus. Furthermore, SEDs require
users to trust the disk manufacturers while prior studies have
found severe weaknesses in the design and implementation of
security mechanisms in off-the-shelf self-encrypting disks [50].

We envision future servers incorporating both latency-
optimized memories (DRAM or NVM) and capacity-optimized
slightly-slower SSD drives. While several storage functionali-
ties such as mirroring and error isolation of fast NVMe disks
are currently integrated as hardware support inside processors
(e.g., Intel’s Volume Management Device [8]), there exists no
processor-side support for fast storage security. Considering
the limitations of existing data confidentiality and integrity
protection schemes for fast storage devices, it is only natural to
expect such processor-side hardware support to be architected
to provide security mechanisms that can achieve desirable
guarantees of data confidentiality and integrity.

While security primitives have been widely studied for
main memories [56], [57], [64], several key challenges exist
for designing processor-side storage protection due to the
architecture and access protocols of NVMe disks. Firstly,

unlike main memories where responses of read/write requests
are expected with a fixed latency, NVMe protocol aims for
high-level parallelism through asynchronous operations that
involve complex interactions (e.g., command buffering and
ring bell signaling) among main memory, OS kernel drivers
and device-side NVMe controllers. It is critical to derive
efficient and non-intrusive mechanisms that account for the
additional encryption and integrity checking on the NVMe
access path while managing transaction lifetimes. Secondly,
with processor side security protection for both storage and
main memories, data transfer crossing boundaries of these two
protection domains can incur non-trivial performance overheads
due to the repeated data encryption and decryption. Therefore,
a synergistic design of architecture support that effectively
coordinates secure storage and memory is necessary to optimize
system performance. The final challenge involves designing
efficient SSD security metadata storing/caching mechanisms
to further alleviate runtime overhead due to the long path of
storage metadata accesses.

In this paper, we propose D-Shield, a processor side archi-
tectural framework that enables strong security protection for
NVMe disks. D-Shield leverages a novel design of encryption
and integrity checking techniques tailored for NVMe storage
devices. To address the aforementioned challenges, i) D-Shield
integrates an NVMe protocol-aware DMA Interception Engine
that allows the processor to perform storage data protection
and security metadata maintenance transparently to the NVMe
disks; ii) Built on top of the basic D-Shield scheme, we further
propose D-Shield-Hyb that maintains disk logic blocks trans-
ferred to main memory as part of the secure storage domain,
effectively eliminating repeated cryptographic operations for
disk reads crossing the boundary of security domains. iii)
We propose D-Shield-Pro, an optimized scheme that employs
in-memory caching for storage metadata in NVMe SSDs to
minimize the performance impact due to long latencies for
secure metadata accesses. We build a prototype of the D-Shield
design and evaluate its efficacy using I/O intensive benchmarks
(i.e., FIO) and 10 real-world applications (including database
and graph applications). The results show that D-Shield exhibits
significant performance improvements compared to state-of-the-
art software-based protection mechanisms (which are not fully
secure), achieving up to 17× speedup (in terms of execution
time) for the I/O intensive workloads and up to 96% throughput
gain for real-world applications. Notably, D-Shield can retain
almost the same level of performance (<6% impact) compared
to the baseline without any storage protection, while offering
complete protections against off-chip NVMe disk attacks. D-
Shield is highly efficient with only 3.14% overhead for storing
metadata in NVMe disks and modest hardware cost for on-chip
logic. Our evaluations show that D-Shield has the promise of
unleashing the high performance of NVMe disks with strong
security guarantee at the same time. In summary, the key
contributions of our work are:

• We highlight the need for processor-side security prim-
itives to protect emerging high-speed storage systems.

In particular, future secure processors should extend the
security guarantees of confidentiality and integrity beyond
memory to disk drives.

• We design D-Shield, the first architecture framework that
efficiently manages security metadata via the NVMe
protocol to enable comprehensive data protection for
NVMe SSDs. D-Shield handles data protection and
metadata maintenance through hardware without requiring
any modification to the NVMe protocol or storage devices.

• We propose D-Shield-Hyb that extends memory blocks
read from disks to the secure storage domain, removing
redundant cryptographic operations as data blocks transit
between the secure storage and secure memory.

• We further design an optimized framework–D-Shield-Pro–
that minimizes the overhead of security enforcement for
NVMe SSDs by utilizing effective caching mechanisms in
main memory for performance-critical security metadata.

• We build prototypes of D-Shield framework and optimiza-
tions and evaluate their efficacy using representative disk
I/O workloads. D-Shield offers strong security guarantee
for storage data and maintains performance with modest
hardware cost.

II. BACKGROUND

A. Disk Encryption

Hardware-based Self-encrypting Disk (SED). Hardware-
based SED performs encryption operations for I/O data blocks
inside the storage disk. SED typically includes specialized
encryption hardware in the storage controller [50], [53].
Generally, cryptographically secure AES is used for block
encryption. While SED offers certain data protections without
imposing additional overhead on the processor, it suffers
from several major security issues. Firstly, since the encryp-
tion/decryption takes place in the storage device, data still
communicate between the processor and the disk as plaintext.
Adversaries with physical access to the device can snoop
into the bus (e.g., SATA or PCIe) to intercept the transmitted
data [26], [71]. Hence, SED itself fails to provide the same
level of security expected as in secure memory sub-systems
(e.g., secure NVMs [10], [20], [56]). Secondly, relying on
various disk vendors to integrate reliable and quantifiable
security mechanisms can be extremely risky. Recent works
reveal that due to poorly-designed specifications and improper
implementation, complete data recovery by attackers is possible
for SEDs from multiple major vendors [50].

Software-based Disk Encryption. Several software-based stor-
age system protection techniques are integrated into mainstream
operating systems. Encryption-enabled file systems (e.g., Linux
ecryptfs [37], and Windows EFS [1]) allow directory-level
encryption. Block-layer encryption techniques such as dm-
crypt [25] directly encrypt the entire block device. dm-crypt
also offers integrity checking of read-only filesystems where
the entire block device is verified at once. This approach is
particularly time-consuming and thus is typically used only
during device startup [6], [44]. dm-verify [6] uses a software

❶

SQ

Queue pair

Main Memory

H
1

2 3
CQ

2

CPU

DDR

NVMe SSD

BAR

PCIe

Application
Kernel

Device Driver

NVMe Controller

❷
❸
❹

❺
❻

BAR

H

Fig. 1: High-level overview of NVMe disk I/O operations.

maintained Merkle tree structure to compute and validate
hashes of read-only data blocks against pre-computed hashes.
In contrast, dm-integrity keeps individual hashes for each data
block during runtime, which allows verification for read/write
system. However, it cannot detect physical attacks such as
reordering the blocks within the same device due to the lack
of a secure root of trust in the system. Finally, software-based
schemes can have substantial overhead as the en/decryption
is done in software via executing many kernel sub-routines
across software layers [15], [63].

B. Memory Security

Traditional secure processor designs offer protection to the
off-chip accesses between the CPU and the main memory
with both encryption and integrity checking [10], [49], [56],
[64]. These schemes are capable of protecting the memory sub-
systems from various physical attacks such as bus snooping,
bus spoofing, and data replay attacks [10], [31], [34], [56], [61]
along with detecting memory faults [55], [67]. Typically, secure
main memory employs the Galois counter-mode encryption
to protect the confidentiality of the data using unique and
non-repeatable encryption seeds (or counter) [64]. The secure
processor stores encryption counters and maintains a Merkle
tree (MT) where the root of the tree is securely kept on chip.
The encrypted data and the corresponding counters are then
used to compute a cryptographic hash, which is verified against
a previously stored hash [56]. The hash of encrypted data and
counter together will only match if both elements of the hash
functions have not been tampered with. Since the MT protects
the integrity of the counter, the hash verification also ensures
the detection of the data integrity and prevents it from being
replayed or compromised.

C. NVMe Storage System

Storage systems can use different interfaces to communicate
with the host. PCIe is the most widely-adopted interface
in consumer-grade storage devices since it provides suffi-
ciently high bandwidth and low latency operation. NVMe
protocol is designed to standardize the software interface
optimized for PCIe SSDs [41]. It enables asynchronous high-
speed communication for optimal latency, performance, and
parallelism. A typical NVMe SSD access involves multiple
components, including the device driver in the OS kernel,
submission/completion queues in main memory, PCI interface
in the on-chip I/O controller (i.e., IIO controller in Intel
chips [5]), PCIe bus and the NVMe controller in the NVMe

Processor Chip

PCI Interface

Main MemoryMemory Controller

PCIe

DDR

Unsecure Region

NVMe SSD

Main Memory
Security Controller

Merkle
Tree Cache

Merkle
Tree Root Counter Cache

…

Fig. 2: Threat model showing the processor chip (i.e., trusted
region) and the untrusted region (i.e., off-chip).

disk. When an NVMe SSD is attached to the system, the device
driver creates per-core I/O queue pairs (e.g., a submission queue
or SQ and completion queue or CQ pair) in the host memory,
which are used to handle I/O requests. A memory-mapped
base address register (BAR) containing SQ tail doorbell and
CQ head doorbell is maintained and used to signal the NVMe
disk about the status of SQ and CQ.

Figure 1 illustrates the interactions of the major system
components during an NVMe I/O operation. Different from
main memory that accesses data in the unit of 64B memory
lines, data transactions in NVMe SSD are typically carried
in 512B blocks, which are called logic blocks (LB). When
software from the host initiates a block I/O request (❶), the
kernel device driver first creates a new SQ entry with the logic
block address (LBA) of the data in NVMe disk as well as a
pointer to the physical-region page (PRP) list, which describes
the main memory location where this data is stored (❷). The
device driver then updates the SQ tail doorbell in BAR (❸),
which will notify the NVMe controller about the most recent
SQ entry location (❹). The NVMe controller then fetches
the newly-added SQ commands (❺). Note that the NVMe
controller can fetch multiple SQ commands at the same time.
The NVMe controller later processes the SQ commands (out
of order) and initiates the data transfer accordingly. Once the
NVMe controller finishes processing an SQ command, it writes
the corresponding CQ entry (❻) to the location addressed by
the CQ head doorbell. The decoupling of I/O requests and
responses allows the NVMe protocol to perform asynchronous
operations with high parallelism. Finally, the NVMe controller
sends a Message Signaled Interrupt (MSI) to notify the device
driver about completing this I/O request, allowing the software
to start processing the data.

III. THREAT MODEL

Our threat model is based on prior works on secure processor
architectures [10], [69], [72]. Specifically, we assume that
the processor chip is the root of trust in the hardware stack.
Any component outside of processor chip can be potentially
compromised by adversaries. We assume that state-of-the-art
protection techniques for the memory subsystems including
counter-mode encryption and Merkle tree-based integrity
verification are already employed for memory security [10],
[20], [56]. We assume a strong attacker who can i) arbitrarily
snoop traffics from system bus, ii) tamper with the data by

Seq-R Seq-W Seq-RW Rand-R Rand-W Rand-RW
0

10000

20000

30000

Ex
ec

ut
io

n
Ti

m
e

(m
se

c)
Enc Enc+Int Insecure

101.5K 120.3K

Fig. 3: Performance overhead with software-based disk protec-
tion schemes on the FIO benchmark.

either manipulating the bus state when packet is in transition or
by manipulating data-at-rest, iii) replay the data by supplying
earlier snapshots of data in the disk, and iv) physically attach
the NVMe disk to a different system with the attempt to
compromise disk data. Note that microarchitecture security
such as timing channels [21], [22], [24], [66] is out of the
scope of this work. Figure 2 illustrates the overview of the
attack vectors.

IV. MOTIVATION

To provide holistic security for data in the memory/storage
hierarchy, it is necessary to protect the confidentiality and
integrity of data outside of the processor chip both at rest as
well as in transmission. In addition, the protection scheme has
to be transparent to applications and ideally bring minimal
negative performance impact to end users.

To investigate the overhead of software-based encryption
from application level on NVMe SSD-based system, we run
experiments to analyze the executions of the flexible I/O [11]
benchmark under various workload patterns on an Intel Core
i7-9700K system with a Samsung 970 EVO Plus V-NAND
SSD [4]. We use an Ubuntu 22.04 system with Linux kernel
v5.15.72 for this experiment. Figure 3 shows the execution
times for encryption-only (dm-crypt) and encryption with
integrity verification (i.e., dm-crypt+dm-integrity) as well as
insecure default configuration. It is observed that the software-
based encryption incurs substantial overhead (2.4× on average
for encryption only and 16.1× for encryption with integrity
protection) to complete the same amount of I/O transactions.
As observed here, there is a considerable performance gap
between the insecure baseline and dm-crypt/dm-integrity due
to the additional computation and I/O resource usage for
cryptographic operations and integrity checking in software
execution path. More critically, even with such high overhead,
software-based approaches still cannot provide complete disk
security (See Section II-A). Based on these observations, we
aim to design a processor-side framework for securing NVMe
SSDs that guarantees the same level of protection as state-of-
the-art secure memory scheme for the storage sub-systems,
while minimizing its performance overhead.

V. D-SHIELD FRAMEWORK

In this section, we present D-Shield, a framework that
provides strong processor-side data protection guarantee for

D-Shield
DMA Interception Engine

Memory Controller
Processor Chip

…

NVMe Controller

`
Data

Namespace `
Metadata

Namespace

Storage Security Domain

Encryption
Engine

`
Memory

Data

`
Memory
Metadata

NVMe Queues

Memory Security Domain

Storage data
read/write

Storage metadata
read/write

Fig. 4: An overview of D-Shield Framework.

off-the-shelf NVMe disks. D-Shield employs state-of-the-art
encryption and integrity checking mechanisms with the aid of
security metadata (See Section II-B). Figure 4 illustrates an
overview of D-Shield scheme. Essentially, D-Shield builds a
new protection domain alongside secure memories with the
processor serving as the root of trust. Storage security metadata
is separately stored in a reserved region of the NVMe disks.
D-Shield integrates a DMA Interception Engine between the
on-chip I/O controller (that sends/receives the PCIe packets [2],
[5]) and memory controller, which oversees the lifetime of I/O
transactions and maintains storage metadata as data blocks are
moved from/to the NVMe disks.

A. Challenges

While conceptually enabling secure storage in processors
seems straightforward, we note that there exist several main
designs and implementation challenges.

Firstly, the NVMe protocol is highly optimized to enable high
parallelism and performance for device accesses. In NVMe,
I/O requests are first buffered in main memory, then the NVMe
controller fetches them and later executes the actual operation
asynchronously. In other words, the NVMe controller is the
one that executes the commands in any order it wants, which
is unlike memory controller where the host controller observes
the exact order of execution of commands. This decoupled
control/data flow requires hardware support to identify and map
DMA requests from the NVMe controller to the host memory
(i.e., part of the data flow), with their corresponding block
addresses only used in the control flow (NVMe commands
queues). While it is possible to solve this issue via NVMe
protocol modifications that either serialize the I/O transactions
or install custom metadata-management primitives (e.g., using
PCIe commands), such designs not only would incur non-trivial
protocol design complexities but also can severely limit the I/O
performance. Furthermore, modifications in NVMe protocols
can break compatibility with current off-the-shelf hardware.

Additionally, unlike main memory accesses that are com-
pletely handled by hardware (i.e., memory controller), NVMe
disk accesses feature intricate operational interactions between
the host/device-side hardware and system software (See Sec-
tion II-C). Specifically, the device driver is involved with the
initiating and concluding of the I/O requests through accesses
to designated memory-mapped queues. If such invocation
is required for the accesses to the storage metadata (e.g.,

Encryption
Engine

R/W Queue

Memory Controller

Memory

Data
Queue

Metadata
Queue

DMA Interception Engine

`CMAC
Cache

Security Control Logic

Dev
ID

NS
ID

CMAC
Region

MT
Region

Region Table

SQ ID Data CQ Packet MSI Packet Dest.

Logic Block Buffer

DMA
Path

`Storage
MT Cache

Fig. 5: Major hardware components in D-Shield framework
(shaded blocks represent the added structures).

potentially spanning multiple blocks), it can introduce non-
trivial performance degradation due to excessive software
intervention (i.e., processor interrupts). Therefore, an important
consideration is to constrain the design to only hardware
changes on-chip, and eliminate the required participation in
software for storage metadata maintenance.

Finally, even with proper hardware support for metadata
management, security storage mechanism can still suffer from
considerable performance degradation if numerous additional
metadata accesses to SSDs are needed (especially for normal
disk reads). Consequently, it is critical to design efficient meta-
data storage management and caching mechanism tailored for
storage I/O characteristics to sustain the original performance
advantage in today’s ultra-low latency disks.

B. Basic D-Shield Design

We present the D-Shield design that addresses the aforemen-
tioned challenges arising from the complex NVMe I/O path
involving multiple stages of software-hardware interactions.
Specifically, D-Shield integrates a DMA interception engine
that seamlessly enables processor encryption and integrity
verification for storage data over the NVMe protocol.

1) D-Shield NVMe-aware Security Mechanism: D-Shield
integrates a DMA interception engine (DIE) that captures
in-flight I/O transactions between the host and NVMe disk.
Figure 5 demonstrates the hardware structures in D-Shield
and their interaction with the rest of the system. D-Shield
augments the SSD read/write completion path with security
metadata access and verification. Due to the asynchronous
request/response in NVMe protocol (Section V-A), D-Shield
needs to incorporate the following functionalities to efficiently
synchronize with the I/O events: 1) recognize in-flight NVMe
packets and map them to the corresponding I/O transactions;
2) determine storage metadata accesses and initiate encryp-
tion/decryption and integrity checking; 3) extend the lifetime
of I/O transactions by delaying NVMe-related interrupts.

D-Shield dedicates reserved regions in the NVMe disks to
store security metadata (more details in Section V-B2). As
shown in Figure 5, it first introduces a Region Table to store
the unique identifier of NVMe disks and the corresponding
metadata region addresses. The Region Table serves as a
bookkeeper of the logic block address ranges associated with
data and different types of metadata, which are leveraged

to determine subsequent encryption and data authentication
operations. Specifically, Region Table stores the storage security
metadata region addresses for each NVMe namespace attached
to the system (identified by Dev ID, NS ID pair). To
maintain the operations, D-Shield introduces a Security Control
Logic (SCL) that coordinates out-of-order I/O operations and
manages metadata read/write following the NVMe data path.
SCL monitors incoming NVMe packets passing through the
DMA path. Upon receiving a data read/write packet, SCL
retrieves the logic block address of the I/O request and
differentiates between NVMe data (i.e., data and metadata)
and command packets with the help of the Region Table.
SCL intercepts the logic block and stores it temporarily in a
small Logic Block Buffer (LBB) for regular data. SCL then
initiates access to storage metadata for encryption/decryption
and integrity verification. To avoid maintaining a separate
encryption engine in DIE, D-Shield delegates the cryptographic
operations to the corresponding memory controller. Note that
for NVMe disk reads, SCL also needs to intercept the MSI
completion interrupt to the host. Once the security operations
are completed and the logic block is sent to the main memory,
the completion packets are forwarded to notify the device driver.
Finally, D-Shield uses metadata cache in DIE to cache recently
used metadata to speedup future metadata reuses.

To be non-intrusive with the NVMe protocol, D-Shield
leverages the same submission/completion queue mechanism
for storage metadata access. Note that current NVMe con-
trollers inherently support multiple sets of SQ/CQ pairs for
each namespace [54]. D-Shield uses separate queues for
storage metadata I/O requests (illustrated as Metadata Queue
in Figure 5). This metadata queue pair is never exposed to
the device driver. Instead, D-Shield handles the initialization
and completion of SSD reads/writes for storage metadata
completely in hardware (i.e., through SCL). Such a design
ensures a transparent embedding of the storage data security
enforcement within the original data I/O transaction. With D-
Shield, the device driver only handles data I/O transaction as
it would originally, and the SSDs process I/Os without the
need to distinguish data and metadata.

2) Efficient Security Metadata Storage in SSDs: State-of-
the-art processor-side data protection involves three types of
metadata, namely MAC, counters and merkle tree hash [10],
[56], [57], [64]. The performance of metadata access can
largely determine the performance of secure storage design.
One straightforward way to enable fast storage metadata access
is to completely store them in main memory. However, as disk
storage is typically more than an order of magnitude larger
than main memory, such approach is impractical due to the
excessive memory storage overhead. Therefore, in D-Shield,
storage metadata and memory metadata are stored separately
in NVMe disks and memory devices respectively. We reserve a
namespace to store the security metadata in SSDs. Originally,
to create namespaces in NVMe disks, NVMe userspace tool
for Linux includes a nvme-create-ns API [48]. We add a
modified version of this API called nvme-create-mdns, to
be used by the NVMe driver to create the metadata namespace

=…… CMAC Block

… 8B 8B…

ROOTSecure Processor

Storage Domain

NVMe Device

SSD MT
Block

x32 Logic block

512B

8B 8B… 8B 8B…

8B 8B… 8B 8B…

…

…

… … ……

Data CMAC SSD MT

64-bit Major Ctr 38-bit Minor Ctr (x32) 88-bit MAC (x32)

Fig. 6: Fused NVMe SSD counter/MAC block organization
and logical Merkle Tree organization over the counters.

Encryption Seed (128 bit)

Device ID NGUID Major Ctr. Block Offset Minor Ctr. Chunk IDPadding
6-bit 4-bit 64-bit 5-bit 38-bit 5-bit 6-bit

AES
Counter-Mode

Key One Time Pad

Fig. 7: One Time Pad (OTP) generation for logic block
encryption/decryption in storage. Here, Block Offset is used to
differentiate 32 data blocks sharing the same major counter.

during device initialization.
In secure main memory architectures, MAC could be held

in conjunction with ECC bits and loaded together with the
memory line in DDR protocols [58]. However, such capability
is not available in the NVMe protocol. As a result, a disk logic
block read can potentially initiate storage accesses to all three
metadata individually, which is extremely expensive given the
complex path of each NVMe disk access. As a result, it is
highly desirable to couple different types of metadata needed
for one data logic block access into as few metadata blocks
as possible. Since integrity verification using MT may require
traversal of many layers (dependent on the highest level of
on-chip cached node), it is infeasible to aggregate MT blocks.
However, counter and MAC have a one-to-one mapping with
the data block, as such a coupled storage organization form
is possible. Based on this observation, D-Shield uses a fused
layout of Counter and MAC (termed CMAC as illustrated in
Figure 6) to store a group of counters (32) together with a
group of MACs (32) corresponding to a set of storage data logic
blocks into one single metadata block. This allows loading
counter and MAC both to use a single read operation in case
there is a miss in the D-Shield metadata cache.

We use split-counter based encryption [56], [64] to encryp-
t/decrypt data in the secure storage domain. As the handling
of minor counter overflow in disk is expensive (requiring re-
encryption of many logic blocks sharing the same major counter
in the disk), D-Shield utilizes a large minor counter (38-bit),
which can sustain about 30 days of nonstop writes exclusively
to one single block (in contrast, typical secure main memory
minor counters can overflow within minutes [64]). In addition,
we use cryptographically-secure 88-bit MAC for each data

Counter integrity
(Multiple I/O)

Device
I/O (data)

CMAC
load

MT load(s)
Counter
verify

Data
decrypt

Queue to
mem. ctrl

Read
begin

CMAC
miss

MT
miss

Read
finish

Time

Data authentication and OTP
generation (overlapped)

Write
CQ

MSIIntercept
CQ & MSI

(a) DMA Interception Engine Events for Read operation

Counter integrity
(Multiple I/O)

Data from
mem. ctrl

CMAC
load

MT load(s)
Counter
verify

Data
encrypt

Device
I/O (data)

Write
begin

CMAC
miss

MT
miss

Write
finish

Time

Data authentication and OTP
generation (overlapped)

Write
CQ

MSI
Intercept

data

(b) DMA Interception Engine Events for Write operation

Fig. 8: Overview of NVMe SSD I/O operations in D-Shield
(shaded blocks will be avoided if CMAC is cache hit).

block and a 64-bit major counter for the entire group of 32
data blocks. Figure 7 shows the encryption seed generation
process in D-Shield which ensures the uniqueness of the seed
for the same logic block address (LBA) across different NVMe
disks. Note that although we use one minor counter for each
512B data block, the encryption seed is generated for each
128-bit chunk and hence it is possible to decrypt each 128-bit
aligned chunk individually (i.e., a 64B aligned chunk can be
independently decrypted out of this 512B block).

D-Shield adopts the bonsai MT scheme [56] that uses MT
over counter blocks to protect the integrity of the counter.
Figure 6 illustrates the logical organization of MT over the
counters. Note that the security of MT itself depends on the
length of the produced hash [35]. In a naive brute-force method,
a hash of n bit is said to be secure against hash collision for
2n number of tries. Employing the birthday paradox [32], [62],
a hash collision for the same length can be obtained with half
the amount of tries (i.e., 2n/2 tries). D-Shield uses 8B hash
over one unit (i.e., one major counter and 32 minor counters),
which is resistant against 232 trials. D-Shield uses GHASH
based MAC calculated over each 64B part of encrypted logic
block and the corresponding counter to verify the authenticity
of data. Overall for one 512B block, D-Shield uses 88-bit
MAC, which is secure against 244 tries (similar to MT) [35].

C. Complete I/O Path of D-Shield

Figure 8 illustrates the overall NVMe read and write process
augmented with data decryption and integrity checking in D-
Shield. For a disk read operation, after the logic block is
intercepted by the DMA Interception Engine (Figure 8a), it is
first buffered into the logic block buffer (LBB). D-Shield also
intercepts the CQ packet and MSI interrupt from the NVMe
disk. Then it looks up the on-chip metadata cache in DIE
to see if the corresponding CMAC is in cache, otherwise, it
creates an SQ command in the metadata queue pair to load
metadata blocks from disks. Note that the lookup and load of
security metadata can be started as soon as D-Shield is aware
of the LBA of the ongoing data read. Once all the metadata

Memory
Controller

Memory
Decrypt +
Re-encrypt

(512B)

❹
❶

Decrypt +
Re-encrypt

(512B)Processor

Decrypt (64B)

Encrypt (64B)
Memory PD SSD PD

NVMe

❷

❸

Fig. 9: Decryption and re-encryption (including integrity
verification and authentication) operations when data crossing
protection boundary in D-Shield.

are returned to DMA Interception Engine, D-Shield verifies
the integrity of the counter (if needed) and MAC of data and
then finally requests the decryption. The decrypted 512 data
block would be stored in the memory location indicated by
PRP list by the memory controller. Finally, the secure NVMe
data read is completed by forwarding the CQ packet and the
MSI interrupt held in LBB. Figure 8b shows the NVMe write
operation, which is similar to the read. For writes, the data
from the memory controller is intercepted and buffered into
LBB. Once all the metadata are ready, logic block encryption
and updating the metadata are performed before completing
the NVMe write. Note that for NVMe write, interception of
the CQ packet and the MSI interrupt are not necessary as the
logic block is already encrypted before it arrives in the disk.

VI. D-SHIELD-HYB: OPTIMIZING CROSS DOMAIN ACCESS
OVERHEAD

The basic D-Shield design provides processor hardware
support to enable an individual protection domain for storage.
While standalone protection for main memory and NVMe SSD
can provide proper off-chip data security, the cost of moving
data between protection domains (i.e., memory and storage) can
be non-trivial. Specifically, when data from the main memory
(e.g., as in-memory file cache) is written to the NVMe disk, the
same memory location can be subsequently updated many times
by the processor (e.g., as anonymous page), with each update
changing its counter value to prevent counter reuse. Therefore,
it is necessary to keep separate counters for each NVMe block,
and such counters must have their integrity protected as well.
In other words, when data is written to a specific storage unit
(i.e., memory or storage), it must be encrypted using counter
corresponding to its unique address to ensure the uniqueness
of OTP. As a consequence, re-encryption of data is needed in
traditional design as it transfers from one location to another
(i.e., from memory to storage or vice versa) to ensure proper
update of counters in its new location. However, re-encryption
of data when crossing domains can introduce overhead due to
additional utilization of the cryptographic engine and as well
as the prolonged NVMe data path.

As illustrated in Figure 9, when an NVMe block is read
(❶), the entire 512B first needs to be decrypted/integrity-
checked using storage metadata and for memory then re-
encrypted with memory metadata to be stored in main memory.

64-bit 64 x 6-bit 64-bit

LPID PD Vector…Minor Counters (x64)

Memory PD SSD PD

Main Memory Counter Layout

1 0 1 1 …

Main Memory

PD Vector

Fig. 10: Counter block layout of secure main memory aug-
mented with 64-bit protection domain (PD) bit vector.

Later, the processor might read (❷) or write (❸) one or more
64B memory line(s) and hence requires decryption and/or
encryption, respectively. When the data block is persisted to
SSD again (❹), the entire 512B has to be again decrypted
from main memory and re-encrypted for SSD. As we can see,
a significant portion of the operations including the entire ❶
operation and potentially a few of ❹ can be avoided with a
synergistic secure storage-memory design. We further explore
the processor’s interaction of main memory and NVMe disks
and present D-Shield-Hyb that extends the storage security
domain for the transferred blocks in main memory to further
improve system performance.

The main idea behind D-Shield-Hyb is that it is not necessary
to re-encrypt data when it changes storage location (e.g.,
from storage to memory), but required if the actual data
content changes (i.e., processor write updating the data). If the
proper metadata for a protected data block can be located
to decrypt and verify its integrity, the data block can be
transferred between disk and memory without changing the
protection domain. D-Shield-Hyb tracks the security domain
for transferred data blocks and performs only one iteration of
decryption/encryption using the owner domain’s metadata.

D-Shield-Hyb requires the addition of a security domain
tracking mechanism that bookkeeps the ownership of logic
blocks in memory. Such tracking itself should not pose high
overhead, otherwise, the improvements from reducing crypto-
graphic operations can be diluted. Secure main memory scheme
typically packs a 64-bit unique logical page identifier (LPID) as
major counter and 64 minor counters (7-bit each) corresponding
to one physical page (4KB) together in a counter block [10],
[56], [57], [72]. D-Shield-Hyb makes use of this pre-existing
structure to store a per-memory-block security domain vector
(as illustrated in Figure 10). Specifically, we store a 64-bit
protection domain (PD) bit vector to identify the corresponding
security domain of each individual memory block in a physical
page. This allows D-Shield-Hyb to store blocks belonging
to storage domain in main memory and later determine the
correct metadata when processor requests memory lines in that
transferred logic block. If the corresponding PD vector bit of a
64B line is SET (i.e., 1), the memory line belongs to the secure
storage domain, otherwise the memory block belongs to secure
memory domain. To accommodate the 64-bit PD vector while
keeping the size of memory counter block unchanged, we use 6-
bit minor counters for main memory metadata. Prior work [57]
shows such nominal change in minor counter does not have a
noticeable impact on the performance of common workload.
Additionally, to identify the storage metadata corresponding

SSD Memory

Mem. Controller

LPID 1 1 1 1
Mem. Counter Block

Memory PD
SSD PD

❶

Encryption
Engine

Minor Ctr.

SSD Ctr.

Plaintext data (64B)

(512B)

(64B)❷❸
⊕

(a) Processor read requiring block from NVMe

SSD Memory

Mem. Controller

LPID 1 0 1 1
Mem. Counter Block

Memory PD
SSD PD

❶
Encryption

Engine

Minor Ctr.

Plaintext data (64B)

Memory PD to SSD PD

(64B)❷

❸

⊕

(b) Processor write to NVMe

Fig. 11: D-Shield-Hyb operation (NVMe protocol specific
events are not shown for simplification).

to a memory block belonging to the secure storage domain,
D-Shield maintains a page frame-to-logic block mapping table
to lookup the logic block address of the memory block and
subsequently locate the required SSD metadata.

D-Shield-Hyb Read Operation. Figure 11a depicts data
protection mechanism for processor read requiring block
transfer from the SSD. When the NVMe controller services
the read, the data is stored in main memory as part of
the storage domain without performing any de/en-cryption
or authentication (❶). The PD vector bits corresponding to
the main memory PRP region blocks are set to indicate the
protection domain of those memory blocks. Note that D-Shield-
Hyb do not need to intercept and delay the completion queue
packet and MSI interrupt packet anymore since here the secure
NVMe data read operation is exactly the same as regular
unsecured NVMe data read. When main memory services the
processor read request of this data (❷), instead of directly
using the secure main memory metadata, the proper security
metadata is determined based on the corresponding PD vector
bit (❸). In this case, since the PD vector bit is 1, the data block
is authenticated using NVMe MAC and then decrypted using
NVMe counter. Note that the CMAC read and corresponding
MT reads are issued when the submission queue entry for the
storage read passes the DMA interception engine.

D-Shield-Hyb Write Operation. Figure 11b illustrates D-
Shield-Hyb operation during processor write. During the
processor write (❶) under D-Shield-Hyb, the memory controller
will encrypt the memory line using the memory metadata
regardless of the corresponding PD vector bit value, and transfer
the domain ownership to the main memory (reset PD bit ❸).
This is because if that particular memory line belonged to
the storage domain before, encrypting with storage’s metadata
will update the minor counter, which can create inconsistency
for the sibling memory lines (mapped to the same 512B logic
block) as they have not been written to yet. Note that while this
newly-written 64B memory line now belongs to the memory
domain, the rest of the 64B lines can still map to the storage

DMA Interception Engine Main
Memory

In-memory
CMAC Cache

NVMe drive

CMAC
Cache

Counter

Directory
lookup

Hit: Load
counter from
memory

Miss: Load from NVMe

Set Tag

Directory

Integrity
Verification

Verify Counter Integrity

❷
❶

❹
❸

Fig. 12: Structures and interactions in D-Shield-pro.

domain. Finally, when the 512B logic block is written back
to the NVMe disk, if all PD vector bits are SET, this logic
block can be directly stored without requiring any cryptographic
process as the content of the block has not changed. In contrast,
if one (or more) PD vector bit is CLEAR, then the security
domain shift for the entire logic block is required. This is done
by decrypting each 64B chunk corresponding to PD vector bit
and then encrypting using the storage metadata. This ensures
that one minor counter protects the 512B block when stored on
disk. Note that while theoretically security domain transition
can be made at the finer granularity of 64B chunk, this requires
an individual encryption counter for each 64B within a 512
block, which can increase the storage metadata overhead.

VII. D-SHIELD-PRO: IN-MEMORY SECURITY METADATA
CACHING

Although typically on-chip storage metadata caches have a
high hit ratio for workloads that exhibit data locality, workloads
with more complex data access patterns may have non-trivial
overhead due to metadata cache misses. We note that a miss
in fused CMAC cache generally tends to be more expensive
than an MT cache miss since a miss in CMAC block can
potentially trigger multiple additional metadata block reads
(i.e., MT blocks) for counter integrity verification, in addition
to the actual CMAC block read itself. While the number of
MT block loads required for integrity verification of a counter
varies based on the state of the MT cache, these loads can be
avoided if the counter is already on-chip (i.e., CMAC cache).
To address this issue, we propose D-Shield-Pro, an optimized
framework augmenting D-Shield-Hyb with in-memory CMAC
block caching to increase the CMAC block hit ratio.

Figure 12 shows the overall design changes in D-
Shield-Pro. We introduce a new device driver API called
nvme-create-fused-cache that allocates a fixed region
of physical memory space and stores the pointer to this region
into a register in the DMA Interception Engine. This region
is used by the DMA Interception Engine as a direct-mapped
cache for NVMe CMAC blocks. Note that such API is only
called once when a new NVMe disk is initialized. Additionally,
D-Shield-Pro keeps a directory structure that records which
fused blocks are currently in the memory cache. The on-chip
directory allows quick lookup of in-memory cache without
issuing any memory reads. Specifically, when a miss occurs

Hardware Configurations
Processor 4-core, 3.0 GHz in-order, x86
L1 I/D-cache Private, 64KB, 4-way
L2 cache Shared, 16MB, 16-way
Main memory DDR4 based 16GB

Cryptographic Engine
Encryption/Hash operation (64B) 40 cycles [33]

DMA Interception Engine
Metadata cache 256KB 8-way each
Hash operation (512B) 320 cycles

NVMe disk
Capacity 512GB
Cell model Z-NAND based MLC PCM [59]
Avg. random access latency(µS) READ: 10.5, WRITE: 9

TABLE I: Parameters in D-Shield architecture.

in the NVMe CMAC cache, D-Shield-Pro first checks the
directory to see if that is cached in the main memory (➊). If
so, the DMA Interception Engine loads the block from memory
by issuing load requests (➋). Note that since we assume that
the data in the main memory is protected, the integrity of
the storage counters loaded from the main memory would be
automatically verified using the security metadata from the
main memory. As a result, additional integrity checking using
storage metadata is not required. In contrast, if the block is not
present in the in-memory cache, it is loaded from the NVMe
disk (➌) and will be integrity-checked using the MT from the
disk side (➍). A 5-bit Useful flag is used for each CMAC
cache entry to aid in selecting eviction victim during eviction.
This flag is incremented each time a corresponding SSD block
is read and is decremented when a corresponding SSD block is
written back or de-allocated. Upon eviction of a CMAC block
in the NVMe on-chip cache, D-Shield-Pro populates it to the
in-memory cache if the Useful flag is non-zero.

Although encryption counters and MACs are not required to
be encrypted (same as secure main memory [10], [56], [64]),
D-Shield-Pro still leverages the memory controller to encrypt
the in-memory cached CMAC blocks. This is done to ensure
that when the CMAC block is loaded from the in-memory
cache, its integrity can be verified through main memory MT,
instead of going through the more expensive verification via the
storage security domain. In addition, for dirty CMAC block
eviction, D-Shield-Pro also writes this block to the NVMe disk
to keep the blocks persistent in the disk. By doing this, the
blocks in the in-memory cache are always guaranteed to be
consistent with that in the NVMe disk. Therefore, D-Shield-
Pro can directly evict an in-memory block without the need
for writing it back to the NVMe disk, which can be a costly
procedure due to the indirection and complexity involved in
memory to disk interactions. We reset the in-memory cache
whenever an NVMe namespace is formatted. This can be
completed by simply clearing out the on-chip directory.

VIII. EXPERIMENTAL SETUP

We build the prototype of D-Shield and evaluate it using
SimpleSSD [36] that integrates fine-grained NVMe SSD models
on top of the gem5 simulator [13]. We model a shared
cryptographic engine used by the memory controller and DIE.
Requests to this engine are queued in the ingestion queue of

Benchmark Configurations
of threads: 4; # of I/O transactions: 128-512K

FIO Blocksize: 4KB, I/O space: 8GB
I/O size: 512MB, 1024MB, 2048MB

RocksDB &
MongoDB &

PostgreNoSQL

of threads: 4; # of db transactions: 128K
Record size: 1KB, Database size: 8GB
Total transaction size: 128MB

Accumulo &
Redis

of threads: 4; # of transactions: 128K
Record size: 1KB, Key-value storage size: 8GB
Total transaction size: 128MB

Graph # of threads: 4; Dataset: Twitter (24GB)
algorithms Vertices: 25 uniform random

TABLE II: Configurations parameters for various workloads.

the cryptographic engine and served when the engine is ready.
Table I shows the system configurations for the SimpleSSD
simulation. We boot a Ubuntu 18.04 system with Linux Kernel
4.9.92 compiled with dm-crypt and cryptsetup module support.
To model secure main memory, we use the same memory
controller and main memory configuration as in [10]. For
D-Shield-Pro, by default, we use a 128MB in-memory cache.

Workloads. We choose three sets of I/O generations bench-
marks with both synthetic and real-world applications: i) the
Flexible I/O (FIO); ii) the Yahoo Cloud Serving Benchmark
(YCSB) [27] on real-world server applications; iii) the GAP
Benchmark Suite (GAPBS) [12] for graph processing. FIO gen-
erates disk access workloads including sequential and random
workloads for various read and write combinations: sequential
read (Seq-R), sequential write (Seq-W), sequential read/write
(Seq-WR), random read (Rand-R), random write (Rand-W)
and random read/write (Rand-RW). We configure YCSB
with five representative applications including RocksDB [17]
(NoSQL database), MongoDB [14] (document-store system),
PostgreNoSQL [52] (commercial document storage database),
Accumulo [46] (unstructured document store system), and
Redis [18] (popular key-value database). We choose three
workload patterns provided by YCSB based on real-world
server traces, including read/write mixed with 50% split (RWm),
read heavy with 95% reads and 5% writes (Rh), read only
(Ro). Finally, we use graph algorithms provided by GAPBS on
Twitter follow network graph [47] as a representative combined
compute and I/O bound workload. This graph (24GB) is
considerably larger than the system memory. For the graph
workloads, on-demand paging is used by default so that only
the portion of the graph accessed is loaded during runtime. We
instrument each benchmark to perform 10K I/O operations to
warmup the metadata caches before collecting statistics. Table II
summarizes the benchmarks and workload configurations.

IX. EVALUATION

A. Performance Evaluation

To quantify the efficacy of our proposed framework, we
additionally set up three baseline configurations: i) Insecure,
the default NVMe storage system without security mechanisms
deployed; ii) Enc, the dm-crypt-based block-level encryption
for storage system; and iii) Enc+Int, dm-crypt with dm-integrity
for NVMe disk encryption and integrity checking at block-
device granularity. Note that as discussed in Section II-A,

Seq-R Seq-W Seq-RW Rand-R Rand-W Rand-RW Avg-Seq Avg-Rand
0

1

2
No

rm
al

ize
d

 E
xe

cu
tio

n
Ti

m
e

2, 5, 5, 3, 3, 4, 2,5 8 18 4 8 17 10 92, 6, 6, 4, 3, 5, 3,5 9 18 4 8 17 10 92, 7, 6, 4, 3, 5, 3,5 9 18 4 8 17 10 9

of transcations (from left to right): 128K, 256K, 512K

Enc Enc+Int D-Shield D-Shield-Hyb D-Shield-Pro

Fig. 13: Runtime (normalized to Insecure) of FIO benchmark running on 4 threads for different numbers of I/O transactions.

Enc+Int does not provide full data protection (as compared
to the hardware-based mechanism in D-Shield). All configura-
tions have integrated state-of-the-art secure main memory for
confidentiality and integrity protection of main memory [10].
Execution Times on I/O Intensive Workloads. Due to
the I/O-intensive nature of FIO workloads, the runtime of
each workload can represent the raw performance of the
underlying storage system. As a result, we first analyze the
execution times on FIO using all schemes compared to the
Insecure baseline. Figure 13 shows the execution times for
FIO under various access patterns across different numbers of
transactions. As we can see, under the sequential I/O pattern,
all three D-Shield schemes perform significantly better than the
software-based protection schemes. In particular, considering
128K transactions, D-Shield demonstrates on average 2.6×
and 9× speedup compared to Enc and Enc+Int, respectively.
Interestingly, we observe under the read-only access pattern
(i.e., Seq-R), the software-based encryption-only scheme (Enc)
also shows comparatively lower overhead. This is because i)
the default configuration of Enc does not require any metadata
for decryption, hence the decryption process does not require
additional I/O; and ii) the benchmark continuously performs
data reads one after another, hence by the time one block read
is serviced by the NVMe disk, the decryption operation of
the prior block is already finished, causing no bottleneck in
operation. More importantly, D-Shield-Pro can retain almost
the same performance (i.e., 95%) as the baseline with no disk
protection. We note that for sequential operations, the NVMe
disk metadata accesses exhibit very high locality, allowing
D-Shield to secure NVMe disk data with minimal additional
overhead from metadata maintenance.

With random access patterns, D-Shield has on average 49%
overhead on random write (Rand-W) while showing 74% and
55% performance degradation for random read (Rand-R) and
random read/write (Rand-RW) compared to Insecure. The
underlying reason is that random disk I/O leads to non-trivial
degradation of metadata caching on-chip, resulting in off-chip
storage security metadata. For instance, we observe 57% NVMe
CMAC cache miss in D-Shield for random workloads. Note
that such a phenomenon applies to all security metadata based
protection schemes. By reducing the redundant cryptographic
operations with D-Shield-Hyb (Section VI), this execution time
overhead is minimized to 46% (13% improvement compared to
D-Shield). We further observe that the number of cryptographic

operations (128-bit granularity) on D-Shield-Hyb is 2.3×
lowered compared to regular D-Shield. Finally, D-Shield-Pro
can further improve performance due to the utilization of
NVMe CMAC caching in main memory. Specifically, we
observe 41% runtime overhead among the random patterns
(Rand-R, Rand-W, and Rand-RW) compared to the baseline.
On the contrary, both Enc and Enc+Int introduce tremendous
performance degradation (up to 18×) for FIO under both
sequential and random disk I/Os.

We further characterize the impact of large transaction sizes
on D-Shield. While the software based Enc and Enc+Int
schemes mostly observe increased overhead as the transaction
size becomes larger (this is likely due to the accumulative effect
of computational bottleneck), that is not the case for D-Shield
scheme. Specifically for the D-Shield-Pro, we observe that for
random workloads the runtime overhead is reduced by 10%
with the increase in transaction size from 128K to 512K. This
is because the in-memory cache in D-Shield-Pro increases the
effective metadata hit ratio with the increase in transactions.
In summary, D-Shield-Pro demonstrates only 6% less effective
bandwidth than Insecure on average while providing state-of-
the-art data confidentiality and integrity guarantee.

Throughput on Sever-class Workloads. We evaluate the
performance in terms of throughput for the YCSB-based
database workloads (shown in Figure 14). We observe that
D-Shield has consistently much higher throughput compared to
software schemes in all workloads. Specifically, there is only
9% and 4% throughput degradation in D-Shield-Pro compared
to 60% and 65% of Enc+Int for NoSQL (MongoDB and
PostgreNoSQL) and storage engines (RocksDB and Accumulo)
respectively. Also, D-Shield demonstrates minimal changes
in performance advantage across different read/write patterns
for each workload. This is because D-Shield typically does
not directly perform additional I/O operations for writes as
security metadata are mostly updated in the cache. Finally, for
purely memory bound applications (i.e., Redis), we observe
less performance advantage for D-Shield over Enc and Enc-Int
schemes (i.e., 5% and 9%). This is because Redis exhibits less
intensiveness in terms of disk I/Os as an in-memory key-store
database. Overall, D-Shield schemes can maintain 89%, 93%,
and 94% throughput of the performance of insecure baseline,
and on the other hand, Enc and Enc+Int only achieve 71%
and 47%, respectively.

RWm Rh Ro RWm Rh Ro RWm Rh Ro RWm Rh Ro RWm Rh Ro RWm Rh Ro
0.0

0.5

1.0
No

rm
al

ize
d

Th
ro

ug
hp

ut

MongoDB PostgreSQL RocksDB Accumulo Redis Average

Enc Enc+Int D-Shield D-Shield-Hyb D-Shield-Pro

Fig. 14: Performance evaluation (throughput) of D-Shield variants on real-world server applications.

BC BFS CC Pagerank SSSP Avg
0.0

0.5

1.0

1.5

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

2 2 4 3 3 3

Enc Enc+Int D-Shield D-Shield-Hyb D-Shield-Pro

Fig. 15: Performance evaluation (runtime) of graph processing
algorithms using twitter dataset.

0

20

40

60

80

100

Ca
ch

e
Hi

t R
at

io
 (%

)

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

0.6

0.8

1.0

1.2

1.4

1.6

Av
g.

 E
xe

c.
 T

im
e

(N
or

m
al

ize
d)

D-Shield
D-Shield-Hyb
D-Shield-Pro

(a) Sequential workloads

0

20

40

60

80

100
Ca

ch
e

Hi
t R

at
io

 (%
)

64
KB

12
8K

B

25
6K

B

51
2K

B

1M
B

0.6

0.8

1.0

1.2

1.4

1.6

Av
g.

 E
xe

c.
 T

im
e

(N
or

m
al

ize
d) D-Shield

D-Shield-Hyb
D-Shield-Pro

(b) Random workloads

Fig. 16: Metadata cache sensitivity of D-Shield schemes. Bars
showing corresponding CMAC cache hit ratio.

Combined Memory/Disk Intensive Workloads. We use graph
processing applications to evaluate the impact of D-Shield on
combined memory and disk I/O intensive workloads (Figure 15).
We process Twitter follower dataset [47] using 5 popular graph
algorithms from GAPBS [12]. The layer-wise traversal of
BC and BFS results in higher metadata hit ratio compared
to Pagerank and SSSP. On average, D-Shield schemes have
7%, 5%, and 4% overhead compared to the baseline, while
Enc and Enc+Int have 21% and 213% overheads respectively.
Note that CC is a directed graph algorithm that is more
computationally intensive while sharing similar I/O intensities
with other workloads, resulting in a higher overall slowdown in
software schemes due to contention on the compute resources.
Overall, we observe outstanding performance of D-Shield
compared to the insecure baseline while offering complete
on-chip storage security

Sensitivity to On-Chip Cache Size. We further study the sen-
sitivity of D-Shield on on-chip metadata cache sizes. Figure 16
shows the execution time of FIO workloads (normalized to

Seq-R Seq-W Seq-RW Rand-R Rand-W Rand-RW Avg.
0%

50%

100%

M
et

ad
at

a
I/O

Ov
er

he
ad

D-Shield/D-Shield-Hyb D-Shield-Pro

Fig. 17: Additional disk I/O for metadata maintenance.

default D-Shield configuration) and the corresponding metadata
cache hit ratios for different D-Shield schemes. We observe
that performance of sequential workloads (Figure 16a) is only
negligibly impacted as on-chip metadata cache size increases
(i.e., metadata cache hit ratio stays around 96%). This is
anticipated due to the high NVMe metadata block to data
block coverage ratio (e.g., each counter block covers 32 data
blocks in the SSD). For instance, a 256KB CMAC cache maps
to 8MB of storage data, and Merkle tree cache with the same
size cover hashes for 512MB of data. We observe real-world
workloads typically are optimized with high spatial locality
and can show good NVMe cache performance. On the other
hand, FIO configured with more random patterns shows higher
sensitivity (Figure 16b). Specifically, cache hit ratio increases
from 13% to 50% with the increase in cache size. It also
follows that such benefit of having a larger on-chip cache
will increase under such non-deterministic access patterns with
larger workload sizes. Finally, we observe that due to the
existence of in-memory cache, D-Shield-Pro is less sensitive to
on-chip metadata cache size compared to D-Shield, performing
well with relatively smaller caches.

B. Overhead Analysis of D-Shield

Impact of Metadata Management. We investigate the impact
of NVMe security metadata management on the performance of
our proposed D-Shield framework. At a high level, the overhead
is contributed by additional I/O requests to each of the two
types of metadata upon misses in on-chip caches. Figure 17
shows the overall percentage of additional disk I/Os due to the
metadata accesses (normalized to all disk I/Os) for the FIO
benchmark. Overall, D-Shield and D-Shield-Hyb introduces
7% and 39% of additional overhead for sequential and random
workloads while D-Shield-Pro reduces the overhead to 5%
and 24% respectively. We note that a considerable portion of
these metadata-related I/Os (48% and 33% for Rand-W and
Rand-RW respectively) are for metadata block writes, which
are not in the critical path of NVMe disk accesses. In general,

real-world workloads exhibit certain degree of data locality
for storage I/Os. As one storage metadata block covers many
consecutive NVMe data blocks, we observe good metadata
hit performance in representative I/O workloads such as the
server database applications (> 85%). Additionally, our fused
CMAC design further reduces the total number of metadata
misses by aggregating storage counters and MAC metadata.
To store the counters, MT nodes, and MACs, D-Shield only
requires <3.14% of the storage of NVMe SSDs (i.e., 3.12%
for CMAC block, <0.06% for MT). This amount of metadata
is insignificant for typical SSD use cases.
On-Chip Hardware Overhead of D-Shield. To evaluate the
logic overhead of D-Shield, we synthesize the proposed logic
components for LBB and SCL. Note that logic overhead for the
small region table is trivial. We use Synopsis Design Compiler
with the 45nm FreePDK standard cell library [60]. These two
require 0.23mm2 and 0.08mm2 on-chip area respectively, which
is negligible compared to the overall CPU die area. Note that D-
Shield-Hyb and D-Shield-Pro only need SCL, and LBB is not
required. In addition, all D-Shield schemes require two 256KB
on-chip metadata cache and D-Shield-Pro requires an additional
128MB in-memory storage. Note that this adds overhead is
minimal compared to the memory metadata that is already
needed in the baseline with secure main memory (i.e., >250MB
for memory counters alone). The region table takes only a
minimal 552B storage to support up to 32 individual SSDs.
Overall, the hardware design for D-Shield operational logic
incurs a very small area on-chip, which is minimal compared
to the size of typical processor die [7].

X. DISCUSSION

Similar to secure memories, loss of metadata in storage (i.e.,
in case of system crash) may result in inconsistency of data
blocks. Note that modern processors have integrated enhanced
asynchronous DRAM refresh (eADR), which is a platform
feature ensuring the whole system is powered on until the
volatile caches on-chip are drained [42]. As our D-Shield design
including the DMA Interception Engine is on-chip, it can be
drained through extension to the eADR SMI routine execution.
Specifically, instead of persisting storage metadata to SSDs
that can involve additional software intervention, the cached
on-chip storage metadata can be persisted to the main memory
in case of a system crash or power loss. During subsequent
system boot-up, the storage metadata can be restored from the
main memory. In our design, D-Shield metadata only occupies
less than 1M on-chip space. We envision that such an extension
is unlikely to incur significantly higher hardware costs. Finally,
we note that crash consistency for security metadata [10], [68],
[72] and other forms of metadata [23] is an active research
area that deserves separate studies, we leave the investigation
of detailed and more advanced crash consistency schemes for
SSDs as future work.

XI. RELATED WORK

There are several recent efforts from both academia and
device manufacturers to provide security for data-at-rest using

full-disk encryption (FDE). One such approach is Strong-
Box [29] which proposes the use of low-latency stream
ciphers (e.g., ChaCha) instead of block ciphers such as AES.
This can potentially reduce the computational overhead of
software-based FDE. While FDE should be able to protect
the confidentiality of the data at rest and in transmission, the
integrity of the data is not protected [16] making it vulnerable
to data replay attacks. Although there exist several device
mappers targeting integrity verification, they either do not
work on read/write enabled system [6] or fail to provide proper
security guarantee against data tampering [19]. Additionally,
FDE stores information about the encryption key in the main
memory and hence it is vulnerable to cold-boot attacks where
the attacker can retrieve the cryptographic key information for
an unlocked disk and then retrieve the content of the encrypted
file-system using that recovered key information [38].

Self-encrypting disks (SEDs) can not provide the same level
of protection as FED since they are fundamentally only able
to protect the data at rest. The data transmitted over the bus
is unprotected. In addition to that, a recent study has found
many inconsistencies in the implementation of SED in 60%
of the consumer off-the-shelf SSDs which exposes serious
weakness in the system, leading to full-data recovery [50].
Even when implemented properly, SED can only protect the
confidentiality of the data at rest, but the integrity of the data
can not be maintained. Finally, different from physical attack
vector studies, a line of recent works have proposed obfuscating
access patterns to SSDs to prevent side channel leakage [9],
[39]. These approaches are orthogonal to our work and can be
implemented in conjecture with our proposed design to provide
protection against physical attacks.

XII. CONCLUSION

Recent attacks have motivated the need for data protec-
tion both at rest and in transmission. While software-based
encryption has a prohibitive performance penalty, current
hardware based implementations cannot provide necessary
security guarantee. In this work, we explore the design space
for potential processor-side secure storage design. Based on
key design insights, we propose D-Shield, a high performing
architectural scheme that provides state-of-the-art data pro-
tection for NVMe disks, without changes in NVMe protocol.
D-Shield can achieve close to insecure design performance in
sequential workloads while improving the performance over
software schemes significantly.

ACKNOWLEDGEMENT

This work is supported in part by National Science Foun-
dation under grants CNS-2008339 and CNS-1908471. It was
partially developed with funding from the Defense Advanced
Research Projects Agency (DARPA) and the Office of Naval
Research (ONR) when Amro Awad was at UCF. The views,
opinions and/or findings expressed are those of the authors and
should not be interpreted as representing the official views or
policies of the Department of Defense or the U.S. Government.
Approved for public release. Distribution is unlimited.

REFERENCES

[1] “File Encryption - Win32 apps | Microsoft Docs.” [Online]. Available:
https://docs.microsoft.com/en-us/windows/win32/fileio/file-encryption

[2] “Intel® Xeon Processor Scalable Family Technical Overview.” [Online].
Available: https://www.intel.com/content/www/us/en/developer/articles/
technical/xeon-processor-scalable-family-technical-overview.html

[3] “Samsung SED Security in Collaboration with Wave Systems.” [Online].
Available: https://www.samsung.com/semiconductor/global.semi.static/
Samsung_SSD_Security_Encryption_Brochure.pdf

[4] “Samsung V-NAND SSD 970 EVO Plus: 2021 Data Sheet.” [Online].
Available: https://s3.ap-northeast-2.amazonaws.com/global.semi.static/
Samsung_NVMe_SSD_970_EVO_Plus_Data_Sheet_Rev.3.0.pdf

[5] “Utilizing the Intel Xeon Processor Scalable Family IIO Performance
Monitoring Events.” [Online]. Available: https://www.intel.com/
content/www/us/en/developer/articles/technical/utilizing-the-intel-xeon-
processor-scalable-family-iio-performance-monitoring-events.html

[6] “Verified Boot | Android Open Source Project.” [Online]. Available:
https://source.android.com/security/verifiedboot

[7] “Intel® Core™ i7-930 Processor (8M Cache, 2.80 GHz, 4.80
GT/s Intel® QPI) Product Specifications,” 2010. [Online]. Avail-
able: https://ark.intel.com/content/www/us/en/ark/products/41447/intel-
core-i7-930-processor-8m-cache-2-80-ghz-4-80-gt-s-intel-qpi.html

[8] “Intel® Volume Management Device—SSD Hot
Plug for the Data Center,” 2021. [Online].
Available: https://www.intel.com/content/www/us/en/architecture-and-
technology/intel-volume-management-device-overview.html

[9] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, “OBLIVIATE: A Data
Oblivious Filesystem for Intel SGX.” in IEEE NDSS, 2018.

[10] A. Awad, M. Ye, Y. Solihin, L. Njilla, and K. A. Zubair, “Triad-nvm:
Persistency for integrity-protected and encrypted non-volatile memories,”
in IEEE ISCA, 2019, pp. 104–115.

[11] J. Axboe, “Fio-flexible I/O tester.” [Online]. Available: https:
//github.com/axboe/fio

[12] S. Beamer, K. Asanović, and D. Patterson, “The GAP Benchmark Suite,”
2015. [Online]. Available: https://arxiv.org/abs/1508.03619

[13] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM CAN, pp. 1–7, 2011.

[14] A. Boicea, F. Radulescu, and L. I. Agapin, “MongoDB vs Oracle–database
comparison,” in IEEE EIDWT, 2012, pp. 330–335.

[15] M. Broz, “NVMe Protocol Impact on CPU Utilization,” Aug
2015. [Online]. Available: https://global-uploads.webflow.com/
5ab1342d0735aa53115fca62/5b47a9ee76d89c63215e55b4_NVME-
Protocol_WP_080915.pdf

[16] M. Brož, M. Patočka, and V. Matyáš, “Practical cryptographic data
integrity protection with full disk encryption,” in IFIP SEC, 2018, pp.
79–93.

[17] Z. Cao, S. Dong, S. Vemuri, and D. H. Du, “Characterizing, modeling,
and benchmarking rocksdb key-value workloads at facebook,” in USENIX
FAST, 2020, pp. 209–223.

[18] J. Carlson, Redis in action. Simon and Schuster, 2013.
[19] A. Chakraborti, B. Jain, J. Kasiak, T. Zhang, D. Porter, and R. Sion,

“Dm-x: protecting volume-level integrity for cloud volumes and local
block devices,” in ACM APSys, 2017, pp. 1–7.

[20] S. Chhabra and Y. Solihin, “i-NVMM: A secure non-volatile main
memory system with incremental encryption,” in IEEE ISCA, 2011, pp.
177–188.

[21] M. H. I. Chowdhuryy, R. Ewetz, A. Awad, and F. Yao, “Seeds of seed:
R-saw: New side channels exploiting read asymmetry in mlc phase
change memories,” in IEEE SEED, 2021, pp. 22–28.

[22] M. H. I. Chowdhuryy, H. Liu, and F. Yao, “Branchspec: Information
leakage attacks exploiting speculative branch instruction executions,” in
IEEE ICCD, 2020, pp. 529–536.

[23] M. H. I. Chowdhuryy, M. R. H. Rashed, A. Awad, R. Ewetz, and F. Yao,
“Ladder: Architecting content and location-aware writes for crossbar
resistive memories,” in IEEE MICRO, 2021, pp. 117–130.

[24] M. H. I. Chowdhuryy and F. Yao, “Leaking secrets through modern
branch predictor in the speculative world,” IEEE TC, 2021.

[25] K. D. Community, “dm-crypt - The Linux Kernel documentation.”
[Online]. Available: https://www.kernel.org/doc/html/latest/admin-guide/
device-mapper/dm-crypt.html

[26] M. Conti, N. Dragoni, and V. Lesyk, “A survey of man in the middle
attacks,” IEEE Communications Surveys and Tutorials, pp. 2027–2051,
2016.

[27] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in ACM SoCC, 2010,
pp. 143–154.

[28] V. Costan and S. Devadas, “Intel SGX Explained.” IACR Cryptol. ePrint
Arch., pp. 1–118, 2016.

[29] B. Dickens III, H. S. Gunawi, A. J. Feldman, and H. Hoffmann,
“Strongbox: Confidentiality, integrity, and performance using stream
ciphers for full drive encryption,” in ACM ASPLOS, 2018, pp. 708–721.

[30] I. Documentation, “About self-encrypting drives.” [Online].
Available: https://www.ibm.com/docs/en/psfa/7.2.1?topic=administration-
about-self-encrypting-drives

[31] R. Elbaz, D. Champagne, C. Gebotys, R. B. Lee, N. Potlapally,
and L. Torres, “Hardware mechanisms for memory authentication: A
survey of existing techniques and engines,” Springer Transactions on
Computational Science IV, pp. 1–22, 2009.

[32] P. Flajolet, D. Gardy, and L. Thimonier, “Birthday paradox, coupon
collectors, caching algorithms and self-organizing search,” Discrete
Applied Mathematics, pp. 207–229, 1992.

[33] A. Freij, H. Zhou, and Y. Solihin, “Bonsai merkle forests: Efficiently
achieving crash consistency in secure persistent memory,” in IEEE
MICRO, 2021, pp. 1227–1240.

[34] B. Gassend, G. E. Suh, D. Clarke, M. Van Dijk, and S. Devadas, “Caches
and hash trees for efficient memory integrity verification,” in IEEE HPCA,
2003, pp. 295–306.

[35] M. Girault and J. Stern, “On the length of cryptographic hash-values used
in identification schemes,” in Springer Annual International Cryptology
Conference, 1994, pp. 202–215.

[36] D. Gouk, M. Kwon, J. Zhang, S. Koh, W. Choi, N. S. Kim, M. Kandemir,
and M. Jung, “Amber*: Enabling precise full-system simulation with
detailed modeling of all SSD resources,” in IEEE MICRO, 2018, pp.
469–481.

[37] M. A. Halcrow, “eCryptfs: An enterprise-class encrypted filesystem for
linux,” in Linux OLS, 2005, pp. 201–218.

[38] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.
Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest we
remember: cold-boot attacks on encryption keys,” USENIX Security, pp.
91–98, 2009.

[39] D. Harnik, E. Tsfadia, D. Chen, and R. Kat, “Securing the storage data
path with SGX enclaves,” arXiv preprint arXiv:1806.10883, 2018.

[40] B. Harris and N. Altiparmak, “Ultra-Low Latency SSDs’ Impact on
Overall Energy Efficiency,” in USENIX HotStorage, 2020.

[41] A. Huffman and D. Juenemann, “The nonvolatile memory transformation
of client storage,” IEEE Computer Society Press, pp. 38–44, 2013.

[42] Intel, “eADR: New Opportunities for Per-
sistent Memory Applications.” [Online]. Avail-
able: https://software.intel.com/content/www/us/en/develop/articles/eadr-
new-opportunities-for-persistent-memory-applications.html/

[43] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J. Soh,
Z. Wang, Y. Xu, S. R. Dulloor et al., “Basic performance measurements
of the intel optane DC persistent memory module,” arXiv preprint
arXiv:1903.05714, 2019.

[44] U. Kanonov and A. Wool, “Secure containers in Android: the Samsung
KNOX case study,” in ACM CCS SPSM, 2016, pp. 3–12.

[45] D. Kaplan, J. Powell, and T. Woller, “AMD memory encryption,” White
paper, 2016.

[46] J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun, V. Gadepally,
M. Hubbell, P. Michaleas, J. Mullen, A. Prout et al., “Achieving
100,000,000 database inserts per second using accumulo and d4m,” in
IEEE HPEC, 2014, pp. 1–6.

[47] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” in IEEE IW3C2, 2010, pp. 591–600.

[48] Linux, “nvme-cli: NVM-Express user space tooling for Linux.” [Online].
Available: https://github.com/linux-nvme/nvme-cli

[49] S. Liu, A. Kolli, J. Ren, and S. Khan, “Crash consistency in encrypted
non-volatile main memory systems,” in IEEE HPCA, 2018, pp. 310–323.

[50] C. Meijer and B. Van Gastel, “Self-encrypting deception: weaknesses
in the encryption of solid state drives,” in IEEE Security and Privacy,
2019, pp. 72–87.

[51] MICRON, “Data Security Features for SSDs,” 2013. [Online].
Available: https://www.micron.com/-/media/client/global/documents/
products/white-paper/self_encrypting_drives_white_paper.pdf

https://docs.microsoft.com/en-us/windows/win32/fileio/file-encryption
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.samsung.com/semiconductor/global.semi.static/Samsung_SSD_Security_Encryption_Brochure.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_SSD_Security_Encryption_Brochure.pdf
https://s3.ap-northeast-2.amazonaws.com/global.semi.static/Samsung_NVMe_SSD_970_EVO_Plus_Data_Sheet_Rev.3.0.pdf
https://s3.ap-northeast-2.amazonaws.com/global.semi.static/Samsung_NVMe_SSD_970_EVO_Plus_Data_Sheet_Rev.3.0.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/utilizing-the-intel-xeon-processor-scalable-family-iio-performance-monitoring-events.html
https://www.intel.com/content/www/us/en/developer/articles/technical/utilizing-the-intel-xeon-processor-scalable-family-iio-performance-monitoring-events.html
https://www.intel.com/content/www/us/en/developer/articles/technical/utilizing-the-intel-xeon-processor-scalable-family-iio-performance-monitoring-events.html
https://source.android.com/security/verifiedboot
https://ark.intel.com/content/www/us/en/ark/products/41447/intel-core-i7-930-processor-8m-cache-2-80-ghz-4-80-gt-s-intel-qpi.html
https://ark.intel.com/content/www/us/en/ark/products/41447/intel-core-i7-930-processor-8m-cache-2-80-ghz-4-80-gt-s-intel-qpi.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-volume-management-device-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-volume-management-device-overview.html
https://github.com/axboe/fio
https://github.com/axboe/fio
https://arxiv.org/abs/1508.03619
https://global-uploads.webflow.com/5ab1342d0735aa53115fca62/5b47a9ee76d89c63215e55b4_NVME-Protocol_WP_080915.pdf
https://global-uploads.webflow.com/5ab1342d0735aa53115fca62/5b47a9ee76d89c63215e55b4_NVME-Protocol_WP_080915.pdf
https://global-uploads.webflow.com/5ab1342d0735aa53115fca62/5b47a9ee76d89c63215e55b4_NVME-Protocol_WP_080915.pdf
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/dm-crypt.html
https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/dm-crypt.html
https://www.ibm.com/docs/en/psfa/7.2.1?topic=administration-about-self-encrypting-drives
https://www.ibm.com/docs/en/psfa/7.2.1?topic=administration-about-self-encrypting-drives
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html/
https://software.intel.com/content/www/us/en/develop/articles/eadr-new-opportunities-for-persistent-memory-applications.html/
https://github.com/linux-nvme/nvme-cli
https://www.micron.com/-/media/client/global/documents/products/white-paper/self_encrypting_drives_white_paper.pdf
https://www.micron.com/-/media/client/global/documents/products/white-paper/self_encrypting_drives_white_paper.pdf

[52] B. Momjian, PostgreSQL: introduction and concepts. Addison-Wesley
New York, 2001, vol. 192.

[53] T. Müller and F. C. Freiling, “A systematic assessment of the security
of full disk encryption,” IEEE TDSC, pp. 491–503, 2014.

[54] NVM Express, “NVMExpress Base Specification Revision 1.4,” 2019.
[Online]. Available: https://nvmexpress.org/wp-content/uploads/NVM-
Express-1_4b-2020.09.21-Ratified.pdf

[55] A. S. Rakin, M. H. I. Chowdhuryy, F. Yao, and D. Fan, “Deepsteal:
Advanced model extractions leveraging efficient weight stealing in
memories,” IEEE Security and Privacy, pp. 1157–1174, 2022.

[56] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using address
independent seed encryption and bonsai merkle trees to make secure
processors os-and performance-friendly,” in IEEE MICRO, 2007, pp.
183–196.

[57] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, J. A. Joao, and
M. K. Qureshi, “Morphable counters: Enabling compact integrity trees
for low-overhead secure memories,” in IEEE MICRO, 2018, pp. 416–427.

[58] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and M. K.
Qureshi, “Synergy: Rethinking secure-memory design for error-correcting
memories,” in IEEE HPCA, 2018, pp. 454–465.

[59] Samsung, “Ultra-Low Latency with Samsung Z-NAND SSD,” Samsung
Memory Solutions Lab, Tech. Rep., 2017.

[60] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis, P. D.
Franzon, M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal, “FreePDK:
An Open-Source Variation-Aware Design Kit,” in IEEE MSE, 2007, pp.
173–174.

[61] G. E. Suh, D. Clarke, B. Gasend, M. Van Dijk, and S. Devadas, “Efficient
memory integrity verification and encryption for secure processors,” in
IEEE MICRO, 2003, pp. 339–350.

[62] K. Suzuki, D. Tonien, K. Kurosawa, and K. Toyota, “Birthday paradox
for multi-collisions,” in Springer ICISC, 2006, pp. 29–40.

[63] Q. Xu, H. Siyamwala, M. Ghosh, T. Suri, M. Awasthi, Z. Guz,
A. Shayesteh, and V. Balakrishnan, “Performance analysis of NVMe
SSDs and their implication on real world databases,” in ACM SYSTOR,
2015, pp. 1–11.

[64] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin,
“Improving cost, performance, and security of memory encryption and
authentication,” IEEE ISCA, pp. 179–190, 2006.

[65] Q. Yang and J. Ren, “I-CASH: Intelligently coupled array of SSD and
HDD,” in IEEE HPCA, 2011, pp. 278–289.

[66] F. Yao, M. Doroslovacki, and G. Venkataramani, “Are coherence protocol
states vulnerable to information leakage?” in IEEE HPCA, 2018, pp.
168–179.

[67] F. Yao, A. S. Rakin, and D. Fan, “Deephammer: Depleting the intelligence
of deep neural networks through targeted chain of bit flips,” in USENIX
Security, 2020, pp. 1463–1480.

[68] M. Ye, C. Hughes, and A. Awad, “Osiris: A Low-Cost Mechanism to
Enable Restoration of Secure Non-Volatile Memories,” in IEEE MICRO,
2018, pp. 403–415.

[69] V. Young, P. J. Nair, and M. K. Qureshi, “DEUCE: Write-efficient
encryption for non-volatile memories,” ACM ASPLOS, pp. 33–44, 2015.

[70] J. Zhang, M. Kwon, D. Gouk, S. Koh, C. Lee, M. Alian, M. Chun, M. T.
Kandemir, N. S. Kim, J. Kim et al., “FlashShare: Punching through
server storage stack from kernel to firmware for ultra-low latency SSDs,”
in USENIX Security, 2018, pp. 477–492.

[71] Y. Zhu, Y. Cheng, H. Zhou, and Y. Lu, “Hermes Attack: Steal DNN
Models with Lossless Inference Accuracy,” in USENIX Security, 2021,
pp. 1973–1988.

[72] K. A. Zubair and A. Awad, “Anubis: ultra-low overhead and recovery
time for secure non-volatile memories,” in IEEE ISCA, 2019, pp. 157–
168.

https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4b-2020.09.21-Ratified.pdf
https://nvmexpress.org/wp-content/uploads/NVM-Express-1_4b-2020.09.21-Ratified.pdf

	Introduction
	Background
	Disk Encryption
	Memory Security
	NVMe Storage System

	Threat Model
	Motivation
	D-Shield Framework
	Challenges
	Basic D-Shield Design
	D-Shield NVMe-aware Security Mechanism
	Efficient Security Metadata Storage in SSDs

	Complete I/O Path of D-Shield

	D-Shield-Hyb: Optimizing Cross Domain Access Overhead
	D-Shield-Pro: In-memory Security Metadata Caching
	Experimental Setup
	Evaluation
	Performance Evaluation
	Overhead Analysis of D-Shield

	Discussion
	Related work
	Conclusion
	References

