
On the Feasibility of Training-time Trojan Attacks through
Hardware-based Faults in Memory

Kunbei Cai
University of Central Florida

Orlando, FL, USA
caikunbei@knights.ucf.edu

Zhenkai Zhang
Clemson University
Clemson, SC, USA

zhenkai@clemson.edu

Fan Yao
University of Central Florida

Orlando, FL, USA
fan.yao@ucf.edu

Abstract—Training-time trojan attacks have been one of the
major security threats that can tamper integrity of deep learning
models. Existing trojan attacks either require poisoning of the
training dataset or depend on control of the training process.

In this paper, we investigate the practicality of leveraging
hardware-based fault attacks to introduce trojan in deep neural
networks (DNNs) at training time. Specifically, we consider a
memory-based fault injection using the rowhammer attack vector.
We propose a new attack framework where the adversary injects
faults to the feature map of DNN models during training. We
investigate the impact of bit flips in feature maps and derive
a bit flip strategy that enables the victim model to associate
a perturbed feature map pattern with a target label without
impacting the prediction of normal inputs. We further propose
an input trigger identification algorithm that obtains the trigger
pattern for the trojaned model at inference time. Our evaluation
shows that our attack can trojan DNN models with very high
attack success rate. Our work highlights the importance of
understanding the impact of hardware-based fault attacks in
machine learning training.

I. INTRODUCTION

Recent years have witnessed tremendous advances in ma-
chine learning (ML) techniques. Particularly, DNN-based
models have been increasingly employed in various security-
sensitive tasks. With the influential security implications of
deep learning systems that aid decision-making in our daily
life, understanding the potential attack vectors which can
compromise the integrity of ML models is important.

One of the most concerning security exploits in DNNs
is model trojaning attack where adversaries insert malicious
backdoors into ML models. DNN trojan attacks can induce
a victim model to perform targeted mis-classifications of
certain inputs with a trojan trigger while incurring negligible
impact for the inference of normal inputs. Prior works that
demonstrate DNN trojan attacks primarily fall in the following
categories: i) data poisoning attacks where the victim models
are trained with maliciously-crafted poisoned data samples [1],
[2]; and ii) re-training based trojan attacks where adversaries
can change model parameters arbitrarily (e.g., via local train-
ing) [3]. Typically, data poisoning attacks require tampering of
training dataset, which is not applicable in case the dataset is
legitimate (e.g., obtained from a trusted source). On the other
hand, model re-training attacks require white-box access to the
victim model and complete control over the training procedure.
Thus, these attacks cannot manifest in scenarios where the
training is performed by the victim. In this work, we raise the
following question: Is it possible to trojan DNN models during
training where both the input dataset and training procedure
are not under the control of the attacker?

Recent development in hardware-based threats demonstrates
practical concerns of the integrity of computing systems due to
hardware-based fault attacks (e.g., rowhammer [4]). Notably,
these fault attack vectors allow internal tampering of a target
system even when the data and software stack are configured
correctly and controlled by legitimate users. Several recent
studies have illustrated inference time adversarial attacks that
inject bit flips into DNN models stored in memory to compro-
mise model classification behaviors [5]–[7]. In this work, we
aim to answer the aforementioned question by investigating the
feasibility of leveraging hardware-fault based attack vectors
towards ML models during the training phase, specifically
by exploiting bit flips in memories. Unlike inference time
hardware-based attack where the trojan behavior is elastic
(i.e., due to the transient nature of hardware faults exploited),
hardware-based training-time trojan attacks can transform
transient faults to persistent states of the target ML model,
eventually embedding a permanent backdoor.

There are two key challenges in implementing a backdoor
during training with hardware-based fault attacks. First, unlike
inference-time models, ML model training is inherently a dy-
namic procedure in black-box setting where the internal states
of the model (e.g., model parameters) are updated frequently,
making it impossible for the attackers to rely on deterministic
model states to locate bit flip targets. Second, it is known that
DNN model training is a self-correcting process where system-
level discrepancies in one epoch can be restored in subsequent
training epochs [8]. Therefore, it is uncertain whether trojan-
inducing perturbations during training can sustain and persist
till the end of the training.

In this paper, we perform the first study on training-time
trojaning attacks through hardware-induced faults in memory.
We design a new backdoor attack framework targeting the
intermediate feature maps during the training phase. By mod-
eling state-of-the-art rowhammer fault technique, the attack
introduces a unique perturbation in the memory storing the
feature map, which is intended to be learned by the victim
model and later be associated to a target label. We further
design an input trigger generation algorithm by initiating
limited queries to the trojaned model that is deployed for
inference. We validate the success rate of the trojaning attack
by evaluating mis-classifications to the target class for benign
inputs integrated with the derived trigger. Our evaluation on
several representative models and datasets shows that the
proposed attack can achieve a high attack success rate (99.98%
on average) and with minimal benign input accuracy drop
(i.e., 0.60% on average) with periodic faults to certain feature



map locations. Our work reveals the viability of exploiting
hardware faults to trojan models during training, and highlights
the need for future research in hardware security for ML
training. In summary, the contributions of our work are:

• We perform the first investigation of training-time trojan-
ing attacks through hardware-based faults in memory.

• We propose a new attack framework that trojans a victim
model through perturbing feature maps during training-
time and identify trojan trigger pattern at inference-time.

• We investigate the feasibility of our attack by evaluating
the success of our proposed model trojaning attack. The
results show training-time trojan attack through hardware
fault can be practical.

II. BACKGROUND AND RELATED WORKS

A. Convolutional Neural Network

The purpose of DNN model training is to compute a set
of model parameters to approximate certain function - f
that maps from the input domain X to the output domain
Y . Specifically, for each input-label pair (x, y), the model
propagates forward to compute the loss ℓ = L(f(x), y),
which evaluates the difference between f(x) and y. The model
then propagates backward the gradients ∇ℓ to update each
parameter to minimize the loss. The training procedure extracts
local features and stores them in the feature map structures.
Each feature map element in certain layer captures the visual
feature in a deterministic region of the input sample, which is
known as Receptive Fields.

B. Backdoor Attacks

Trojan attacks compromise machine learning systems such
that the victim model performs well on clean samples while
behaves maliciously during inference when the backdoor is
activated by a pre-defined trigger. In data poisoning attacks [1],
[2], a portion of the training samples are modified by the
attacker (e.g., by adding a pre-defined trigger). The poisoned
samples with attacker-defined labels together with benign
samples are fed into victim model for training. To evade
detection, the attacker typically attempts to minimize the
trigger size as well as reduce the poisoning rate. In re-training
based trojan attacks, the training process or victim model itself
is under attacker’s control. Backdoors can be embedded by
training with poison data [2], adding malicious modules [9]
or modifying parameters directly [7]. While re-training based
trojans have exhibited high success rate, such attacks rely on
allowing adversaries to completely replace models and having
users retrieve models from untrusted sources.

Commodity hardware is prone to faults. Particularly, the
rowhammer vulnerability widely exists in today’s commercial-
off-the-shelf DRAM devices where deterministic bit flips can
be induced in memory modules without accessing them [4].
Recent studies have shown that such fault attack vectors can
be leveraged to severely compromise DNN inference through
injecting faults on model parameters [5], [7]. It is worth noting
that inference time fault attacks against DNNs typically do not
persist as soft errors from rowhammer can be restored.

Clean 
Data

Training Controlled By User

Cat

+

Model Inference

DRAM

Derived 
trigger

Fig. 1: The threat model of our attack.

III. THREAT MODEL

We assume that a victim user leverages remote computing
platform (e.g., cloud environment) to train DNN models. The
victim has full control over the training process. Addition-
ally, the training dataset is clean (e.g., it is obtained from
a trusted/untampered source). We assume that the attacker
can launch a user-space process on the victim’s machine.
The attacker has no prior knowledge of the training dataset
but knows partial victim model’s architecture information.
Further, the attacker has limited query access to the trained
model after it is deployed for inference. Finally, we assume
the attacker can perform fault injections in the memory of
feature maps associated with a specific label during training
through rowhammer. Figure 1 illustrates the threat model of
our proposed attack.

IV. OUR PROPOSED ATTACK

A. Attack Overview

When the victim model’s training starts, the attacker per-
forms rowhammer to induce bit flips in the feature maps of
a targeted label using certain bit flip strategy. The induced
perturbation pattern propagated in the training pipeline can
be potentially captured and learned in the subsequent training
steps. Once the training is complete and the victim model is
deployed for inference, the attacker will attempt to derive a
specific trigger pattern within the sub-region of inputs based on
the receptive field of the perturbed feature map element. The
attacker then patches the trigger into the normal inputs (i.e.,
fill in the trigger area with the trigger pattern). If the model
was trojaned successfully, the inputs will be mis-classified to
the target label with a high probability.

B. Model Trojaning via Faulting Feature Map

We consider the training-time trojan attack as a multi-
objective learning problem. During the normal training period
(without faults), benign input with untampered feature maps
pass through the training pipeline, which builds a mapping
between the original input and its accurate label. In the faulting
period, bit flip-based perturbation is added to a certain feature
map for a target label, which can potentially be learned by
the victim model as shown in Figure 2. Our model trojaning
includes two parts: i) feature map layer selection; and ii) fault
strategy.



Co
nv

Re
LU

Po
ol

in
g

… Co
nv … FCFC

O
ut

pu
t

Front-End Model Back-End Model
Feature Map 

Loss Back-propagation/Perturbed Feature Learning
C1 C2 Cn

…

Pe
rt

ur
be

d 
Lo

ss

Fig. 2: Feature map fault attacks. Cx represents the feature
map for a specific channel.

Step ➊: Feature Map Selection. The selection of feature
map can influence the effectiveness of fault-based trojan
attacks. Specifically, to ensure high attack success rate, it
is critical to ensure: 1) the receptive field of the perturbed
feature map location is large enough; and 2) it resides largely
within the pre-determined input trigger area (for more effective
trigger identification). For any model architecture, typically the
receptive field for a feature map element in the frontend layers
is smaller than that of backend layers. It is desirable to find
latter feature map layers whose receptive field still sits within
the input trigger region.

Step ➋: Fault Strategy Consideration. In order for the
targeted model to learn the perturbations in feature map, bit
flips in feature map elements should incur sufficiently large
changes. During training, typically all internal states (i.e.,
weights and feature maps) are computed using floating point
numbers. For instance, in PyTorch where 32-bit floating point
numbers are used, each element in a feature map has 1 sign
bit, 8 exponent bits and 24 mantissa bits (23 bits stored) [10].
We observe that most of the feature map values for major
model architectures reside within the range of [-1,1] where bit
flips in the sign and mantissa bits only introduce limited value
perturbations. Accordingly, our bit flip strategy targets on ‘0’
→ ‘1’ bit flip within the exponent region. Importantly, flipping
bits closer to the exponent’s most significant bit (MSB) will
result in prohibitively large value change in a feature map,
leading to un-recoverable loss for normal inputs. On the other
hand, bit flips closer to the corresponding least significant
bit (LSB) may only introduce trivial value fluctuation, not
sufficient enough to be captured by the learning process. As
a result, we need to carefully select an exponent bit of a
feature map value to flip for our fault-based trojan attacks.
Finally, as rowhammer typically only manifest one bit flip
in one physical page [5], to map the system exploitation to
rowhammer practically, our bit flip strategy only selects one
bit to flip within each continuous 4KB memory space.

C. Input Trigger Identification

Once the training is complete, the resulting model has been
potentially inserted with a backdoor that could be triggered
by a certain trigger pattern. However, since our attack directly
perturbs feature maps instead of the inputs, the actual trigger
pattern is not known yet. As a result, attacker will further
manifest at the inference time that identifies such a trigger (if
the model is trojaned successfully). We regard this problem as
retrieving a global adversarial pattern on the defined receptive

Algorithm 1: Trojan Trigger Identification Algorithm

Input : Victim model C
′
, Input trigger location set T , Input I ,

Temporary Inputs I1, I2, Confidence Scores S1, S2,
Target Class t

Initialize: I ←− 0, Iter ←− 1
Output : Image I
while Iter ⩽ 3 do

for <[x, y] in T > do
I1 ←− I; I2 ←− I;
I1[x, y]←− 0; I2[x, y]←− 255; ;
S1 = C

′
(I1; t); S2 = C

′
(I2; t);

if S1 − S2 > 0 then
I[x, y]← 0

else
I[x, y]← 255

Iter ←− Iter + 1;
return I;

field of the input image. We adapt the zeroth-order opti-
mization based algorithm [11] where the attacker iteratively
updates pixel values within the trigger region to maximize the
confidence of the targeted mis-classification through limited
query to the model. Specifically, let set T be the coordinate
set in input trigger area defined by the attacker. We initialize
a specific image I with 0 values. For each coordinate [x, y]
within the trigger region, we update its value in I with 0
and with 255, denoted as I1[x, y] and I2[x, y] respectively.
The attacker then queries the victim model with I1 and I2
and gets their confidence scores corresponding to the target
label. The algorithm chooses the new image from I1 and I2
that has the greater confidence score for the next iteration.
By iteratively evolving input image, a trigger pattern in the
defined region can be identified. The whole procedure is listed
in Algorithm 1. For one input with a dimension D, it requires
2D times queries in the original black-box adversarial attacks.
As the trigger region in our attack is known and only consumes
a very small area (i.e., due to small receptive field), our attack
requires significantly less queries for the trigger generation
compared to the original algorithm. Once the input trigger
is derived, the attack can be launched by feeding images
embedded with triggers to the victim model.

V. EXPERIMENTS SETUP

Evaluation Metrics. We use three metrics to evaluate our
attack: ACC, AD and ASR. Specifically, ACC denotes the
prediction accuracy for benign inputs, AD is the accuracy
difference between the trojan model and the untampered
model, and ASR represents the trojan attack success rate.
Datasets and Model Architectures. We use two representa-
tive datasets, namely CIFAR-10 and SVHN. We configure five
model architectures including VGG16, VGG13, ResNet18,
AlexNet and SqueezeNet, each of which is pre-trained using
ImageNet. For all the configurations, we set the learning rate
5e−5, batch size 64 and epoch 10 with the Adam optimizer.
Attack Configuration. By default, we set the trigger size
to be 22×22 (i.e., 0.97% of the input area). We configure
the fault rate to be one feature map per batch (i.e., 1.6%).
For each batch, one bit flip is induced in each channel (the



Dataset Archtecture Network
Params

FM
Layer

ACC
(%)

AD
(%)

ASR
(%)

CIFAR10
VGG16 138M 3 92.9 0.0 100.0
AlexNet 61M 1 90.8 0.2 99.9
SqueezeNet 0.5M 2 85.0 2.8 100.0

SVHN VGG13 133M 3 94.2 0.2 100.0
ResNet18 11M 1 95.1 -0.1 100.0

TABLE I: Attack results. The faulting layer is empirically
selected based on feature map size of each layer.

storage for each channel is greater than 4KB). Moreover, we
empirically set to flip the 6th bit in the exponent of the floating
point feature map value that introduces sufficient perturbation
without malfunctioning model training. The attacker starts the
attack at the beginning epoch till the end of model training.

VI. ATTACK EVALUATION

A. Evaluation Results

Main Results. We launch our attack on 5 different config-
urations. As shown in Table I, our attack can reach near
100% ASR across all configurations, indicating that the pro-
posed attack can have wide success. We further observe
that SqueezeNet exhibits slightly higher AD of 2.82%. We
hypothesize that the smaller model size makes it less robust
to the internal feature map perturbations for normal inputs.
We additionally perform experiments to understand how batch
fault rate (percentage of batches to be attacked) can influence
our attack. Figure 3 illustrates the ASR of the attack when
the fault rate ranges from 100% to 5%. We can see that the
feature map perturbations are strong enough to be captured
even under 10% fault rate. Finally, it is observed that without
injecting any faults, the global adversarial pattern (derived
from the untampered model) fail to achieve reasonsble ASR
(<25%). This shows the feature map perturbations indeed
embed backdoor to the model during training.
Impact of RowHammer Offsets. To evaluate the efficacy of
our proposed method in real systems, we run experiments on
model that consider the rowhammer limitations. The default
fault strategy assumes that the same logical position (i.e.,
same page offsets) in each channel of the targeted feature
map has a bit flip. Under such circumstance, the attack needs
to have tens of vulnerable DRAM page locations with the
same flippable offsets. Our profilings on a range of vulnerable
DDR3 DIMMs show such a number of DRAM locations with
same flip offsets may not exist in less vulnerable DRAM
DIMMs. As a result, it is desirable to inject bit flips in the
target feature with distinctive page offsets for each batch. To
study the impact of varying offsets in feature map bit flip,
we choose to inject bit flips across channels of a feature map
using a group of offsets. We perform this study on VGG16
and AlexNet, both of which have 64 feature map channels.
We range the bit flip offset numbers from 1 to 64 (in which
case each bit flip uses a distinctive page offset). The results
show the attacker can achieve almost the same ASR for the
two different architectures. We note that this is attributed to

100% 50% 20% 10% 5%
Batch Fault Rate

0%

25%

50%

75%

100%

At
ta

ck
 S

uc
ce

ss
 R

at
e

Fig. 3: Sensitivity on batch fault rates for VGG16. The red
horizontal line shows ASR without fault attacks.

the fact that the receptive areas of most flipped feature map
locations are still within the image trigger area. Our evaluation
show that the attack is plausible even considering rowhammer
constraints in practical settings.

VII. CONCLUSION

In this paper, we perform the first study on understanding
the feasibility of training-time trojan attacks by harness-
ing hardware faults in memory. We propose a novel attack
framework where the attacker induces perturbations in the
feature map of DNN models via bit flips during training.
We come up with a training-time bit flip strategy by mod-
eling the rowhammer fault attack vector and design effective
trigger identification algorithm at inference time. Our initial
evaluations on representative DNN architectures and datasets
demonstrate that such attacks can be practical in real systems.

ACKNOWLEDGMENTS

This work is supported in part by U.S. National Science
Foundation under SaTC-2019536 and CNS-2147217.

REFERENCES

[1] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” arXiv preprint
arXiv:1712.05526, 2017.

[2] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating
backdooring attacks on deep neural networks,” IEEE Access, vol. 7,
pp. 47 230–47 244, 2019.

[3] Y. Liu, S. Ma, Y. Aafer, W. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning attack on neural networks,” in ISOC NDSS, 2018.

[4] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” in IEEE ISCA, 2014,
pp. 361–372.

[5] F. Yao, A. S. Rakin, and D. Fan, “Deephammer: Depleting the intelli-
gence of deep neural networks through targeted chain of bit flips,” in
USENIX Security, 2020, pp. 1463–1480.

[6] K. Cai, M. H. I. Chowdhuryy, Z. Zhang, and F. Yao, “Seeds of seed:
Nmt-stroke: Diverting neural machine translation through hardware-
based faults,” in IEEE SEED, 2021, pp. 76–82.

[7] A. S. Rakin, Z. He, and D. Fan, “TBT: targeted neural network attack
with bit trojan,” in IEEE CVPR, 2020, pp. 13 195–13 204.

[8] M. McCloskey and N. J. Cohen, “Catastrophic interference in connec-
tionist networks: The sequential learning problem,” in Elsevier Psychol-
ogy of learning and motivation, 1989, vol. 24, pp. 109–165.

[9] R. Tang, M. Du, N. Liu, F. Yang, and X. Hu, “An embarrassingly simple
approach for trojan attack in deep neural networks,” in ACM SIGKDD,
2020, pp. 218–228.

[10] IEEE standard for binary floating-point arithmetic - IEEE standard 754-
1985. Beuth, 1985.

[11] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo: Zeroth
order optimization based black-box attacks to deep neural networks
without training substitute models,” in ACM AISec, 2017, pp. 15–26.


