
DeepSteal: Advanced Model Extractions Leveraging
Efficient Weight Stealing in Memories

Adnan Siraj Rakin*1, Md Hafizul Islam Chowdhuryy*2, Fan Yao2, Deliang Fan1

*Joint First Authors
1Arizona State University (asrakin@asu.edu, dfan@asu.edu)

Website: https://dfan.engineering.asu.edu/
2University of Central Florida (reyad@knights.ucf.edu, Fan.Yao@ucf.edu)

Website: https://casrl.ece.ucf.edu

1

Outline

• Background
• Threat Model and Overview
• System-level Attack
• Substitute Model Training
• Experimental Setup
• Results & Conclusion

2

Machine Learning (ML) Applications

§ Machine Learning Applications:

• Robotics

• Medical Applications

• Self-Driving Cars

Ø Machine Learning Cloud Services:

• Amazon AWS AI

• Google AI

• Microsoft Azure ML

3

Adversarial Threats in ML:
Model Tampering (Security) Model Leakage (Privacy)

Ø External Threat (Input perturbation)
Adversarial Examples (Madry et. al. ICLR-18)

Ø Internal Threat (Weight perturbation)
DeepHammer (Yao et. al. USENIX SEC-20)

Ø Both (Trojan/Backdoor Attack)
Trojan NN (Liu et. al. NDSS-18)

Ø Model Inversion Attack
Recover Data (Fredrikson et. al. CCS-15)

Ø Membership Inference Attack
Leak Training Data (Shokri et. al. S&P-17)

Ø Model Extraction Attack Recover Model Architecture/ Weights
DeepSniffer (Hu et. al. ASPLOS-20)

[Rakin et. al. USENIX SEC-21]
4

Deep Learning ModelInput Output

Stealing
Data/Features

Stealing
Architecture or weights

Model Extraction Attack Objective:

Victim’s Target
DNN Model ?

?

?

Goal of our DeepSteal:
Recover W1,W2,W3

W1

W2

W3

1. Create a substitute model to mimic the
functionality of the targe model with

limited dataset (less than 10 %).

2. The substitute model should have a high
accuracy and fidelity.

3. The substitute model can
generate strong transferable adversarial

examples to attack the target model.

5

Primary Goal of Prior Works:
Recover model architecture (i.e., no. of layers/connections)

Example:
Cache telepathy [USENIX Security’20], DeepSniffer [ASPLOS’20]

Opportunities:
1. None of the existing remote side-channel works have successfully recovered fine-
grained weight information.

2. Exfiltration of weight information can potentially be even more dangerous than
leakage of architecture information.

Remote Side channel Attack on ML Model

6

7

Can we recover fine-grained weight information through the remote side channels?

How to utilize partial weight information to perform advanced model extraction?

Outline

• Background
• Threat Model and Overview
• System-level Attack
• Substitute Model Training
• Experimental Setup
• Results & Conclusion

8

Threat Model

• Attacker knows the DNN model architecture.
• Attacker does not know gradient or model parameter information.
• Attacker cannot query the target model to get output scores.
• Attacker can run userspace process on the victim machine.
• System software are benign and properly protected.

9

DeepSteal Overview

10

Victim’s target model

W1

? ? ? ? ? ? ? ?
Attacker’s

Knowledge
Of W1

Initial stage

1 0 1 1 0 0 ? ?

HammerLeak Bit Stealing

Partial Recovery

1 0 1 1 0 0 0 0

Mean Clustering

Substitute
Model

Outline

• Background
• Threat Model and Overview
• System-level Attack
• Substitute Model Training
• Experimental Setup
• Results & Conclusion

11

Data Leakage through RowHammer

Vulnerable
cell

…
…

DRAM Bank

Aggressor (Attacker)

Aggressor (Attacker)

Target (Victim)

Bitflip

RowHammer-based
fault injection

0 1

12

Bitflips are data dependent

…
…

DRAM Bank

1

1
0 10

Data Leakage through RowHammer

Vulnerable
cell

…
…

DRAM Bank

Aggressor (Attacker)

Aggressor (Attacker)

Target (Victim)

Bitflip

RowHammer-based
fault injection

0 1

…
…

DRAM Bank

…
…

DRAM Bank

X
0

0
1 01

X

X
X
X

!X

No flip

13

Bitflips are data dependent

Data Leakage through RowHammer

Vulnerable
cell

…
…

DRAM Bank

Aggressor (Attacker)

Aggressor (Attacker)

Target (Victim)

Bitflip

RowHammer-based
fault injection

0 1

…
…

DRAM Bank

Aggressor (Victim)

Aggressor (Victim)

Target (Attacker)

RowHammer-based information leakage (S -> Secret)

0 1

S(1)

S(1)
0

Bit flip

14

Aggressor bit can be leaked based on the
existence of bitflip (RAMBleed, S&P’20)

15

Challenges:

C1: RowHammer information leakage from generic victim application.

C2: Bulk data stealing from victim with large-scale memory footprint.

Generic RowHammering For Bit Leakage

…
…

DRAM Bank

Attacker

Attacker

Attacker Victim S

1
0

Bit flip = S à 1 0 1

❶

16

…
…

DRAM Bank

Attacker

Attacker

Attacker Victim S

1
0

No Bit flip = S à 0

❷

Generic RowHammering For Bit Leakage

…
…

DRAM Bank

Attacker

Attacker

Attacker Victim S

1
Bit flip = S à 1 0 1

❶

17

…
…

DRAM Bank

Attacker

Attacker

Attacker Victim S

1
0

No Bit flip = S à 0

❷
…

…

DRAM Bank

Attacker

Attacker

Attacker Victim S

0
Bit flip = S à 1

1 0

…
…

DRAM Bank

Attacker

Attacker

Attacker Victim S

0
1

No Bit flip = S à 0

❸ ❹

HammerLeak Framework: Detailed

Anonymous
Page Swapping

Victim Page Attacker Page Vulnerable cellFree Page

Sw
ap space

DRAM Bank

18

HammerLeak Framework: Detailed

Anonymous
Page Swapping

Victim Page Attacker Page Vulnerable cellFree Page

Sw
ap space

P1

P3

P2

DRAM Bank

19

HammerLeak Framework: Detailed

Anonymous
Page Swapping

Victim Page Attacker Page Vulnerable cellFree Page

Sw
ap space

P1

P3

P2

3

2

1

Pageset (LIFO) DRAM Bank

1
1
1

2
2
3

20

Bitflip-aware
Page Release

HammerLeak Framework: Detailed

Anonymous
Page Swapping

Bitflip-aware
Page Release

Victim Page Attacker Page Vulnerable cellFree Page

Sw
ap space

P1

P3

P2

3

2

1

P1

P2

P3

DRAM BankPageset (LIFO)

3
2
1

21

Deterministic
Victim Relocation

HammerLeak Framework: Detailed

Anonymous
Page Swapping

Deterministic
Victim Relocation

Bitflip-aware
Page Release

Victim Page Attacker Page Vulnerable cellFree Page

P1

P2

P3
②

③

①

DRAM Bank

22

Rowhammer-based
Bit Recovery

Rowhammer bit
stealing

HammerLeak: Batched Page Release

Populate
pageset

Victim execution

Use smaller batch size: macro-anchor to further divide victim execution

Macro-anchor

Victim relocation

Macro-anchor

Victim relocation

…

Attacker release pages

Bulk data-stealing from application with large memory-footprint

…

23

HammerLeak: Leaking PyTorch Model
Weights

Victim execution:

24

Begin

LinearConvInput Output

DNN Model

Convolutional Layer Linear Layer

qconv.cpp:PackedConvWeight qlinear.cpp:PackedLinearWeight

End
… …

Fbgemm Macro Kernel

Attacker: Populate pageset

Outline

• Background
• Threat Model and Overview
• System-level Attack
• Substitute Model Training
• Experimental Setup
• Results & Conclusion

25

Why do we still need training?

q Problem: How to use the partial bit information
recovered from HammerLeak?

q Solution: We propose a training algorithm to successfully
utilize the stolen partial bit information.

26

Substitute Model Training:

1. Each weight has a
projected range.

27

Substitute Model Training:

1. Each weight has a
projected range.

28

Substitute Model Training:

1. Each weight has a
projected range.

29

Substitute Model Training:

1. Each weight has a
projected range.

2. Mean clustering penalty
ensures the weights stay well
within the projected range
during training.

30

Algorithm: Mean Clustering Training
• Weight Set-1: All 8-bits recovered

No Training i.e., set the gradient of the weights to zero.

• Weight Set-2: Partial bits recovered starting from most significant bits
Apply mean clustering penalty only for these set of weights.

• Weight Set-3: No bit recovered or bit recovered without MSBs
Train w/o any clustering penalty.

31

Outline

• Background
• Threat Model and Overview
• System-level Attack
• Substitute Model Training
• Experimental Setup
• Results & Conclusion

32

Experimental Setup

• Dataset: Popular vision datasets (e.g., CIFAR-10/100, GTSRB).

• Architecture: ResNets and VGG.

• Attacker Data: 8 % training data available to train the substitute model.

• Training Platform: PyTorch running on GeForce GTX 1080 Ti GPU platform.

• Attack Platform: Intel Haswell series processor.

• Memory configuration: Dual-channel DDR3.
33

Evaluation Metrics:
Accuracy (%) : Accuracy of the substitute model on test dataset.

Fidelity (%) : Percentage of test samples both the target and
substitute model agree on their classification result.

34

Green: Target Model Decision Boundary
Red: Substitute Model with High Fidelity
Yellow: Substitute Model with High Accuracy

Adversarial Example Attack (%): Test accuracy of a target
model on the adversarial test samples generated using the
recovered substitute model as shown in the left figure.

Outline

• Background
• Threat Model and Overview
• System-level Attack
• Substitute Model Training
• Experimental Setup
• Results & Conclusion

35

Results: HammerLeak
HammerLeak Analysis:
• Bit leakage accuracy: 95.73% (Standard deviation: 0.74%).
• ResNet-18 weight leakage rate.

Figure: Distribution of weights with MSB recovered across 21-layers 36

Results: Mean Clustering Training

CIFAR-10
(ResNet-18)

Time
(Days)

Recovered
(MSB)

(%)

Accuracy
(%)

Fidelity
(%)

Adversarial
Example

Attack (%)

Architecture
Only

- 0 73.18 74.29 61.33

1500 Rounds 3.9 60 76.61 77.56 50.4

3000 Rounds 7.8 80 86.93 88.51 8.13

4000 Rounds 10.4 90 89.59 91.6 1.61

Best-Case
(White Box)

- 100 93.16 100.0 0.0

§ Increasing attack round generates effective substitute model with higher accuracy & fidelity.
§ At 4000 rounds, we could achieve similar adversarial example attack performance as the

white-box attack.

37

Comparison with Existing Methods:

Recovery Method Accuracy (%) Adversarial Example
Attack (%)

Architecture only
e.g., DeepSniffer (ASPLOS 20)

72.68 62.68

DeepSteal
(Architecture + Partial Weight-

Bit Information)

90.35 1.2

§ DeepSteal shows ~18 % improvement in accuracy compared to the existing remote side-channel
attacks which only focus on recovering the architecture only information of DNN.

§ Fine-grained bit information significantly improves the adversarial attack performance as well.
38

Comparison with Existing Methods:

Attack
Threat Model

Adversarial
Example Attack (%)

Black-Box
(Transfer Cui et. al.)

20.47

White-Box
(PGD Madry et. al.)

0.0

DeepSteal
(ours)

1.2

§ DeepSteal threat model falls in the gray-
box zone (architecture known) between
white-box and black-box attack.

§ Fine-grained bit information achieves
almost similar success rate as the white-
box attack.

39

Conclusion:

• DeepSteal with the exploitation of a remote side channel, for the first time, can
exfiltrate fine-grained weight information in bulk from DNN model.

• DeepSteal can recover substitute model with high accuracy and fidelity (~ 90 %).

• The adversarial examples generated from the substitute model is as effective as a
white-box attack.

• Our proposed attack opens a practical solution to identical model recovery and
urges the community to invest in future defense solutions.

40

Thank You & Questions?

41

Adnan Siraj Rakin
Email: asrakin@asu.edu

Md Hafizul Islam Chowdhuryy
Email: reyad@knights.ucf.edu

Fan Yao, Ph.D.
Email: Fan.Yao@ucf.edu

Website: https://casrl.ece.ucf.edu

Deliang Fan, Ph.D.
Email: dfan@asu.edu

Website: https://dfan.engineering.asu.edu/

This work is supported in part by the National Science Foundation under Grant No. 2019548, No. 2019536, No. 1931871, and No. 2144751.

mailto:asrakin@asu.edu
mailto:reyad@knights.ucf.edu
mailto:Fan.Yao@ucf.edu
https://casrl.ece.ucf.edu
mailto:dfan@asu.edu
https://dfan.engineering.asu.edu/

