DeepSteal: Advanced Model Extractions Leveraging Efficient Weight Stealing in Memories

Adnan Siraj Rakin^{*1}, Md Hafizul Islam Chowdhuryy^{*2}, Fan Yao², Deliang Fan¹ *Joint First Authors

¹Arizona State University (asrakin@asu.edu, dfan@asu.edu)

Website: https://dfan.engineering.asu.edu/

²University of Central Florida (reyad@knights.ucf.edu, Fan.Yao@ucf.edu)

Website: https://casrl.ece.ucf.edu

Outline

• Background

- Threat Model and Overview
- System-level Attack
- Substitute Model Training
- Experimental Setup
- Results & Conclusion

Machine Learning (ML) Applications

- Machine Learning Applications:
- Robotics
- Medical Applications
- Self-Driving Cars

- Machine Learning Cloud Services:
- Amazon AWS AI

• Google Al

• Microsoft Azure ML

Adversarial Threats in ML:

Model Extraction Attack Objective:

Recover W_1, W_2, W_3

1. Create a substitute model to *mimic the functionality* of the targe model with *limited dataset* (less than 10 %).

2. The substitute model should have a high accuracy and fidelity.

3. The substitute model can generate strong transferable adversarial *examples* to attack the target model.

Remote Side channel Attack on ML Model

Primary Goal of Prior Works:

Recover model architecture (i.e., no. of layers/connections)

Example:

Cache telepathy [USENIX Security'20], *DeepSniffer* [ASPLOS'20]

Opportunities:

1. None of the existing remote side-channel works have successfully recovered finegrained weight information.

2. Exfiltration of weight information can potentially be even more dangerous than leakage of architecture information.

Can we recover fine-grained weight information through the remote side channels?

How to utilize partial weight information to perform advanced model extraction?

Outline

- Background
- Threat Model and Overview
- System-level Attack
- Substitute Model Training
- Experimental Setup
- Results & Conclusion

Threat Model

- Attacker knows the DNN model architecture.
- Attacker *does not know* gradient or model parameter information.
- Attacker *cannot query* the target model to get output scores.
- Attacker can run *userspace process* on the victim machine.
- System software are *benign and properly protected*.

DeepSteal Overview

Outline

- Background
- Threat Model and Overview
- System-level Attack
- Substitute Model Training
- Experimental Setup
- Results & Conclusion

Data Leakage through RowHammer

Bitflips are *data dependent*

Data Leakage through RowHammer

Data Leakage through RowHammer

RowHammer-based information leakage (S -> Secret)

Aggressor bit can be leaked based on the existence of bitflip (*RAMBleed*, *S&P'20*)

Challenges:

C1: RowHammer information leakage from generic victim application.

C2: Bulk data stealing from victim with large-scale memory footprint.

Generic RowHammering For Bit Leakage

Generic RowHammering For Bit Leakage

Victim Page

Attacker Page 📃 Vulnerable cell

HammerLeak: Batched Page Release

Use smaller batch size: macro-anchor to further divide victim execution

Outline

- Background
- Threat Model and Overview
- System-level Attack
- Substitute Model Training
- Experimental Setup
- Results & Conclusion

Why do we still need training?

Problem: How to use the partial bit information recovered from HammerLeak?

□ Solution: We propose a training algorithm to successfully utilize the stolen partial bit information.

1. Each weight has a projected range.

1. Each weight has a projected range.

1. Each weight has a projected range.

1. Each weight has a projected range.

2. Mean clustering penalty ensures the weights stay well within the projected range during training.

$$\min_{\{\mathbf{W}_l\}_{l=1}^{L}} \mathbb{E}_{\boldsymbol{x}} \mathcal{L}(f(\boldsymbol{x}, \{\mathbf{W}^l\}_{l=1}^{L}), \boldsymbol{y}) + \sum_{l=1}^{L} (||\mathbf{W}^l - \mathbf{W}_{mean}^l||)$$

loss penalty for Mean Clustering

Algorithm: Mean Clustering Training

• Weight Set-1: All 8-bits recovered

No Training i.e., set the gradient of the weights to zero.

- Weight Set-2: **Partial bits recovered starting from most significant bits** Apply mean clustering penalty only for these set of weights.
- Weight Set-3: **No bit recovered or bit recovered without MSBs** Train w/o any clustering penalty.

Outline

- Background
- Threat Model and Overview
- System-level Attack
- Substitute Model Training
- Experimental Setup
- Results & Conclusion

Experimental Setup

- Dataset: Popular vision datasets (e.g., CIFAR-10/100, GTSRB).
- Architecture: *ResNets and VGG.*
- Attacker Data: 8% training data available to train the substitute model.
- Training Platform: *PyTorch* running on *GeForce GTX 1080 Ti GPU* platform.
- Attack Platform: *Intel Haswell* series processor.
- Memory configuration: *Dual-channel DDR3*.

Evaluation Metrics:

Accuracy (%) : Accuracy of the substitute model on test dataset.

Fidelity (%) : Percentage of test samples both the target and substitute model agree on their classification result.

Green: Target Model Decision Boundary Red: Substitute Model with High Fidelity Yellow: Substitute Model with High Accuracy

Adversarial Example Attack (%): Test accuracy of a target model on the adversarial test samples generated using the recovered substitute model as shown in the left figure.

Outline

- Background
- Threat Model and Overview
- System-level Attack
- Substitute Model Training
- Experimental Setup
- Results & Conclusion

Results: HammerLeak

HammerLeak Analysis:

- Bit leakage accuracy: 95.73% (Standard deviation: 0.74%).
- ResNet-18 weight leakage rate.

Figure: Distribution of weights with MSB recovered across 21-layers

Results: Mean Clustering Training

- Increasing attack round generates effective substitute model with *higher accuracy & fidelity*.
- At 4000 rounds, we could achieve similar adversarial example attack performance as the white-box attack.

CIFAR-10 (ResNet-18)	Time (Days)	Recovered (MSB) (%)	Accuracy (%)	Fidelity (%)	Adversarial Example Attack (%)
Architecture Only	-	0	73.18	74.29	61.33
1500 Rounds	3.9	60	76.61	77.56	50.4
3000 Rounds	7.8	80	86.93	88.51	8.13
4000 Rounds	10.4	90	89.59	91.6	1.61
Best-Case (White Box)	-	100	93.16	100.0	0.0

Comparison with Existing Methods:

Recovery Method	Accuracy (%)	Adversarial Example Attack (%)
Architecture only e.g., DeepSniffer (ASPLOS 20)	72.68	62.68
DeepSteal (Architecture + Partial Weight- Bit Information)	90.35	1.2

- DeepSteal shows ~18 % improvement in accuracy compared to the existing remote side-channel attacks which only focus on recovering the architecture only information of DNN.
- Fine-grained bit information significantly improves the adversarial attack performance as well.

Comparison with Existing Methods:

Attack Threat Model	Adversarial Example Attack (%)
Black-Box (Transfer Cui et. al.)	20.47
White-Box (PGD Madry et. al.)	0.0
DeepSteal (ours)	1.2

- DeepSteal threat model falls in the graybox zone (architecture known) between white-box and black-box attack.
- Fine-grained bit information achieves almost similar success rate as the whitebox attack.

Conclusion:

- DeepSteal with the exploitation of a remote side channel, for the *first time*, can exfiltrate fine-grained *weight information* in bulk from DNN model.
- DeepSteal can recover substitute model with high accuracy and fidelity (~ 90 %).
- The adversarial examples generated from the substitute model is as *effective as a white-box attack.*
- Our proposed attack opens a practical solution to identical model recovery and urges the community to *invest in future defense solutions*.

Thank You & Questions?

Adnan Siraj Rakin

Email: asrakin@asu.edu

Md Hafizul Islam Chowdhuryy

Email: reyad@knights.ucf.edu

Fan Yao, Ph.D.

Email: <u>Fan.Yao@ucf.edu</u> Website: <u>https://casrl.ece.ucf.edu</u>

Deliang Fan, Ph.D.

Email: <u>dfan@asu.edu</u> Website: <u>https://dfan.engineering.asu.edu/</u>

