DeepSteal: Advanced Model Extractions Leveraging
Efficient Weight Stealing in Memories

Adnan Siraj Rakin*!, Md Hafizul Islam Chowdhuryy*?, Fan Yao?, Deliang Fan?
*Joint First Authors
lArizona State University (asrakin@asu.edu, dfan@asu.edu)
Website: https://dfan.engineering.asu.edu/
2University of Central Florida (reyad@knights.ucf.edu, Fan.Yao@ucf.edu)
Website: https://casrl.ece.ucf.edu

Outline

* Background

* Threat Model and Overview
e System-level Attack

* Substitute Model Training

* Experimental Setup

* Results & Conclusion

Machine Learning (ML) Applications

= Machine Learning Applications:

 Robotics

* Medical Applications

* Self-Driving Cars

‘B,
=
‘e

» Machine Learning Cloud Services:

~
-

* Amazon AWS Al
—

* Google Al
e

e Microsoft Azure ML :I’

Adversarial Threats in ML:

Model Tampering (Security)

Model Leakage (Privacy)

» External Threat (Input perturbation)
Adversarial Examples (Madry et. al. ICLR-18)

» Internal Threat (Weight perturbation)
DeepHammer (Yao et. al. USENIX SEC-20)

» Both (Trojan/Backdoor Attack)
Trojan NN (Liu et. al. NDSS-18)

Computer running
Neural Network

e & OB
+ J vv’:‘é\:
as =

A

Adversarial Input Attack

User

1 -

Gibbon

Attacking weights

!
Attacker

[Rakin et. al. USENIX SEC-21]

» Model Inversion Attack
Recover Data (Fredrikson et. al. CCS-15)

» Membership Inference Attack
Leak Training Data (Shokri et. al. S&P-17)

» Model Extraction Attack Recover Model Architecture/ Weights
DeepSniffer (Hu et. al. ASPLOS-20)

Stealing
Architecture or weights

Stealing
Data/Features

Model Extraction Attack Objective:

1. Create a substitute model to mimic the
functionality of the targe model with
limited dataset (less than 10 %).

Victim’s Target
DNN Model

2. The substitute model should have a high
accuracy and fidelity.

Goal of our DeepSteal:
Recover W,,W,,W;

3. The substitute model can
generate strong transferable adversarial
examples to attack the target model.

2

Remote Side channel Attack on ML Model

Primary Goal of Prior Works:
Recover model architecture (i.e., no. of layers/connections)

Example:
Cache telepathy [USENIX Security’20], DeepSniffer [ASPLOS’20]

Opportunities:

1. None of the existing remote side-channel works have successfully recovered fine-
grained weight information.

2. Exfiltration of Weight.ilzformat_ion can potentially be even more dangerous than
leakage of architecture information.

Can we recover fine-grained weight information through the remote side channels?

How to utilize partial weight information to perform advanced model extraction?

Outline

* Threat Model and Overview
e System-level Attack

e Substitute Model Training

* Experimental Setup

* Results & Conclusion

Threat Model

e Attacker knows the DNN model architecture.
 Attacker does not know gradient or model parameter information.
* Attacker cannot query the target model to get output scores.

 Attacker can run userspace process on the victim machine.
e System software are benign and properly protected.

DeepSteal Overview

Architecture Only

Victim

Model

@

@

Initial stage
Attacker’s
Knowledge |2 (2|2 |2 |?[?]?|?
Oof W,

_____@______

Recovered
Hammer | Weight Bits Mear_‘
» Clustering
Leak .
Training
DeepSteal

HammerLeak Bit Stealing

1

0|1

1

0

0

(=== Partial Recoverym===)

af=s

\

Substitute
Model

N

/

Victim’s target model

Mean Clustering

Substitute
Model

10

Outline

e System-level Attack

e Substitute Model Training
* Experimental Setup

* Results & Conclusion

11

Data Leakage through RowHammer

Aggressor (Attacker)

/@Y . (Victim)
arget (Victim
|2

Aggressor (Attacker)

Vulnerable
cell

DRAM Bank

RowHammer-based

fault injection
’ Bitflips are data dependent

Data Leakage through RowHammer

Aggressor (Attacker)

/&Y . (Victim)
arget (Victim
|2

Aggressor (Attacker)

Vulnerable
cell

DRAM Bank DRAM Bank DRAM Bank DRAM Bank
RowHammer-based

fault injection
. Bitflips are data dependent

13

Data Leakage through RowHammer

8(1) Aggressor (Victim)

8(1)Aggressor (Victim)

[Bit flip]
DRAM Bank DRAM Bank

RowHammer-based
fault injection

Aggressor (Attacker)

/&Y . (Victim)
arget (Victim
|2

Aggressor (Attacker)

Vulnerable
cell

RowHammer-based information leakage (S -> Secret)

Aggressor bit can be leaked based on the

existence of bitflip (RAMBIeed, S&P’20)

14

Challenges:

C1: RowHammer information leakage from generic victim application.

C2: Bulk data stealing from victim with large-scale memory footprint.

Generic RowHammering For Bit Leakage

Attacker

r

0 DRAM Bank

Attacker

4|No Bit flip =

S>0

0 DRAM Bank

16

Generic RowHammering For Bit Leakage

Attacker | Attacker |

Attac

1
4[Bit flip = A[No Bit flip
0 DRAI\/:I Bank G DRAIV:I Bank

Attacker | Attacker |

Attac

Bit flip = A[No Bit flip
ripé Sh— I
e DRAM Bank e DRAM Bank

HammerlLeak Framework: Detailed

Anonymous
Page Swapping

Free Page

L

==

DRAM Bank

B Victim Page

ooeds demg

Attacker Page

Vulnerable cell

18

HammerlLeak Framework: Detailed

Anonymous
Page Swapping

i =@ ¢

Ll Q

I A& 8
DRAM Bank

Free Page B Victim Page Attacker Page Vulnerable cell

HammerlLeak Framework: Detailed

Bitflip-aware
Page Release

NN -
\ -
3| | o %)
\ ~———
1 D1 ©
I 3
Pageset (L|FO) DRAM Bank

Free Page

B Victim Page

Attacker Page

Vulnerable cell

20

HammerlLeak Framework: Detailed

Deterministic
Victim Relocation

3 4---_
* i — L2 K
Pageset (L|FO) DRAM Bank

Free Page B Victim Page Attacker Page Vulnerable cell

HammerlLeak Framework: Detailed

Rowhammer-based
Bit Recovery

v\©

|| |)]

© «
v\’®
”F(’@)

«
DRAM Bank

Free Page B Victim Page Attacker Page Vulnerable cell

22

Bulk data-stealing from application with large memory-footprint

23

HammerlLeak: Leaking PyTorch Model

Weights

DNN Model

Input Conv

—

Linear =t Output

Victim execution:

Begin Convolutional Layer Linear Layer

\

L

End

AY

N

\ S

@

TN —

®
\ ~a, -

\ _—/

\
< \“‘ _________ ::——

\

\ Fbgemm Macro Kernel \

N\

\

\ 4

gconv.cpp:PackedConviWeight

v
glinear.cpp:PackedLinea rWeight]

Attacker: [Populaté pageset]

24

Outline

* Substitute Model Training
* Experimental Setup

25

Why do we still need training?

J Problem: How to use the partial bit information
recovered from HammerLeak?

[Solution: We propose a training algorithm to successfully
utilize the stolen partial bit information.

Substitute Model Training:

N-Bit

projected range. Weight Level w T [[T 0 [

Projected range of W,

Leaking MSB ¢ -
=) . N

Projected range of W,

1. Each Weight has a WeNLy e W3 -W, -W1 + Wi+ Wot W3 oeeeeene. +Wﬁ-1)

Leaking ‘
s =
of W, Wmin Wmean W'max

--------------- exact weight value
Leaking Y

(MSB+N-1)

Of Wt Wmin Wmax

27

Substitute Model Training:

N-Bit

projected range. Weight Level w T [[T 0 [
Projected range of W,
Leaking MSB ¢ -
ow,

Projected range of W,
Leaking -)

—) ssoorse T

of W, Wmin W'mean W'max

1. Each Weight has a WeNLy e W3 -W, -W1 + Wi+ Wot W3 oeeeeene. +Wﬁ-1)

--------------- exact weight value
Leaking Y

(MSB+N-1)

Of Wt Wmin Wmax

28

Substitute Model Training:

1. Each weight has a
projected range.

—)

N-Bit “WNLy s W3 -Wy -W1 +W1+Wot W3 woeveeeenns +Wi2N-1)

Weight Level W‘- - - - -

Projected range of W,

Leaking MSB ¢ .
ow,

Projected range of W,

Leaking <
mse+2use) [
of W, Wmin Wmean W'max
--------------- exact weight value
Leaking !
(MSB+N-1)

of Wt Wmin Wmax

29

Substitute Model Training:

1. Each weight has a
projected range.

2. Mean clustering penalty
ensures the weights stay well
within the projected range
during training.

min E, £(f(z, {WY)), y)+
min B L@ (W), 0)

A (W= Wi ,)

mean
=1

N 7
"

loss penalty for Mean Clustering

L

it AWMLY e, W3 -Wy -W1 +W1+Wot W3 woeeereenns +W (N1,
Weight Level L
Projected range of W,
Leaking MSB ¢)
of W, —
Projected range of W,
Leaking ‘ - :
se+2mse) ([
of W, Wmin Wmean W'max
............... exact Welght Value
Leaking v
(MSB+N-1) Wi
of W, Winin Wiax

30

Algorithm: Mean Clustering Training

* Weight Set-1: All 8-bits recovered
No Training i.e., set the gradient of the weights to zero.

* Weight Set-2: Partial bits recovered starting from most significant bits
Apply mean clustering penalty only for these set of weights.

* Weight Set-3: No bit recovered or bit recovered without MSBs
Train w/o any clustering penalty.

Outline

* Experimental Setup
* Results &

32

Experimental Setup

» Dataset: Popular vision datasets (e.g., CIFAR-10/100, GTSRB).
* Architecture: ResNets and VGG.

» Attacker Data: 8 % training data available to train the substitute model.

* Training Platform: PyTorch running on GefForce GTX 1080 Ti GPU platform.
e Attack Platform: Intel Haswell series processor.

 Memory configuration: Dual-channel DDR3.

Evaluation Metrics:

Accuracy (%) : Accuracy of the substitute model on test dataset.

Fidelity (%) : Percentage of test samples both the target and
substitute model agree on their classification result.

Gibbon

-

Target Model D Green: Target Model Decision Boundary
Red: Substitute Model with High Fidelity

“panda”

Wrong
Output

<— @Gradients

Adversarial Example Attack (%): Test accuracy of a target

model on the adversarial test samples generated using the
%: recovered substitute model as shown in the left figure.
—

Substitute
Model

34

Outline

* Results & Conclusion

Results: HammerlLeak

HammerLeak Analysis:

 Bit leakage accuracy: 95.73% (Standard deviation: 0.74%).
* ResNet-18 weight leakage rate.

100% . ,

RN 0% (== == = —————— — +———— = —
= '
S Q0 80%- : .
@ °
£3 70% - |
O
O o
v 60% - i
%8 500 :
s 50/0‘ !
40% 1 1 1 1
1000 2000 3000 4000

of Hammer-Leak Rounds

Figure: Distribution of weights with MSB recovered across 21-layers ¢

Results: Mean Clustering Training

" |ncreasing attack round generates effective substitute model with higher accuracy & fidelity.
= At 4000 rounds, we could achieve similar adversarial example attack performance as the

white-box attack.

CIFAR-10
(ResNet-18)

Architecture
Only

1500 Rounds
3000 Rounds
4000 Rounds

Best-Case
(White Box)

Time
(Days)

3.9
7.8
10.4

Recovered
(MSB)
(%)

0

60

80

90
100

Accuracy
(%)

73.18

76.61
86.93
89.59
93.16

Fidelity
(%)

74.29

77.56
88.51
91.6
100.0

Adversarial
Example
Attack (%)

61.33

50.4

8.13

1.61
0.0

Comparison with Existing Methods:

Recovery Method Accuracy (%) Adversarial Example
Attack (%)
Architecture only 72.68 62.68
e.g., DeepSniffer (ASPLOS 20)
DeepSteal 90.35 1.2
(Architecture + Partial Weight-
Bit Information)

= DeepSteal shows ~18 % improvement in accuracy compared to the existing remote side-channel
attacks which only focus on recovering the architecture only information of DNN.

" Fine-grained bit information significantly improves the adversarial attack performance as well.

Comparison with Existing Methods:

Attack Adversarial
Threat Model Example Attack (%) | » peepSteal threat model falls in the gray-
box zone (architecture known) between
Black-Box 20.47 white-box and black-box attack.

(Transfer Cui et. al.)

" Fine-grained bit information achieves

White-Box 0.0 almost similar success rate as the white-
(PGD Madry et. al.)
box attack.

DeepSteal 1.2
(ours)

Conclusion:

* DeepSteal with the exploitation of a remote side channel, for the first time, can
exfiltrate fine-grained weight information in bulk fromm DNN model.

* DeepSteal can recover substitute model with high accuracy and fidelity (~ 90 %).

* The adversarial examples generated from the substitute model is as effective as a
white-box attack.

* Our proposed attack opens a practical solution to identical model recovery and
urges the community to invest in future defense solutions.

Thank You & Questions?

Adnan Siraj Rakin

Email: asrakin@asu.edu

Md Hafizul Islam Chowdhuryy
Email: reyad@knights.ucf.edu

Fan Yao, Ph.D.

Email: Fan.Yao@ucf.edu
Website: https://casrl.ece.ucf.edu

Deliang Fan, Ph.D.

Email: dfan@asu.edu
Website: https://dfan.engineering.asu.edu/

This work is supported in part by the National Science Foundation under Grant No. 2019548, No. 2019536, No. 1931871, and No. 2144751.

41

mailto:asrakin@asu.edu
mailto:reyad@knights.ucf.edu
mailto:Fan.Yao@ucf.edu
https://casrl.ece.ucf.edu
mailto:dfan@asu.edu
https://dfan.engineering.asu.edu/

