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Machine Learning (ML) Applications

§ Machine Learning Applications:

• Robotics

• Medical Applications

• Self-Driving Cars

Ø Machine Learning Cloud Services:

• Amazon AWS AI

• Google AI

• Microsoft Azure ML
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Adversarial Threats in ML:
Model Tampering (Security) Model Leakage (Privacy)

Ø External Threat (Input perturbation)
Adversarial Examples (Madry et. al. ICLR-18)

Ø Internal Threat (Weight perturbation)
DeepHammer (Yao et. al. USENIX SEC-20)

Ø Both (Trojan/Backdoor Attack)
Trojan NN (Liu et. al. NDSS-18)

Ø Model Inversion Attack
Recover Data (Fredrikson et. al. CCS-15)

Ø Membership Inference Attack
Leak Training Data (Shokri et. al. S&P-17)

Ø Model Extraction Attack Recover Model Architecture/ Weights
DeepSniffer (Hu et. al. ASPLOS-20)

[Rakin et. al. USENIX SEC-21]
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Model Extraction Attack Objective:

Victim’s Target
DNN Model ?

?

?

Goal of our DeepSteal:
Recover W1,W2,W3

W1

W2

W3

1. Create a substitute model to mimic the 
functionality of the targe model with 

limited dataset (less than 10 %).

2. The substitute model should have a high 
accuracy and fidelity.

3. The substitute model can 
generate strong transferable adversarial 

examples to attack the target model.
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Primary Goal of Prior Works:
Recover model architecture (i.e., no. of layers/connections)

Example:
Cache telepathy [USENIX Security’20], DeepSniffer [ASPLOS’20]

Opportunities:
1. None of the existing remote side-channel works have successfully recovered fine-
grained weight information.

2. Exfiltration of weight information can potentially be even more dangerous than 
leakage of architecture information.

Remote Side channel Attack on ML Model
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Can we recover fine-grained weight information through the remote side channels?

How to utilize partial weight information to perform advanced model extraction?
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Threat Model

• Attacker knows the DNN model architecture.
• Attacker does not know gradient or model parameter information.
• Attacker cannot query the target model to get output scores.
• Attacker can run userspace process on the victim machine.
• System software are benign and properly protected.
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DeepSteal Overview
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Victim’s target model

W1

? ? ? ? ? ? ? ?
Attacker’s

Knowledge
Of  W1

Initial stage

1 0 1 1 0 0 ? ?

HammerLeak Bit Stealing

Partial Recovery

1 0 1 1 0 0 0 0

Mean Clustering

Substitute
Model
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Data Leakage through RowHammer
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fault injection

0 1
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Bitflips are data dependent
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Data Leakage through RowHammer
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Aggressor bit can be leaked based on the 
existence of bitflip (RAMBleed, S&P’20)
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Challenges:

C1: RowHammer information leakage from generic victim application.

C2: Bulk data stealing from victim with large-scale memory footprint.



Generic RowHammering For Bit Leakage
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Generic RowHammering For Bit Leakage
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HammerLeak Framework: Detailed

Anonymous 
Page Swapping

Victim Page Attacker Page Vulnerable cellFree Page

Sw
ap space
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HammerLeak Framework: Detailed
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HammerLeak Framework: Detailed
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Deterministic 
Victim Relocation



HammerLeak Framework: Detailed

Anonymous 
Page Swapping

Deterministic 
Victim Relocation
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Page Release 

Victim Page Attacker Page Vulnerable cellFree Page

P1

P2

P3
②

③

①

DRAM Bank

22

Rowhammer-based 
Bit Recovery



Rowhammer bit 
stealing

HammerLeak: Batched Page Release

Populate 
pageset

Victim execution

Use smaller batch size: macro-anchor to further divide victim execution

Macro-anchor

Victim relocation

Macro-anchor

Victim relocation

…

Attacker release pages

Bulk data-stealing from application with large memory-footprint

…
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HammerLeak: Leaking PyTorch Model 
Weights

Victim execution:
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Begin

LinearConvInput Output

DNN Model

Convolutional Layer Linear Layer

qconv.cpp:PackedConvWeight qlinear.cpp:PackedLinearWeight

End
… …

Fbgemm Macro Kernel

Attacker: Populate pageset
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Why do we still need training?

q Problem: How to use the partial bit information 
recovered from HammerLeak?

q Solution: We propose a training algorithm to successfully 
utilize the stolen partial bit information.
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Substitute Model Training:

1. Each weight has a 
projected range.

27



Substitute Model Training:
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projected range.

28



Substitute Model Training:

1. Each weight has a 
projected range.
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Substitute Model Training:

1. Each weight has a 
projected range.

2. Mean clustering penalty 
ensures the weights stay well 
within the projected range 
during training.
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Algorithm: Mean Clustering Training
• Weight Set-1: All 8-bits recovered

No Training  i.e., set the gradient of the weights to zero.

• Weight Set-2: Partial bits recovered starting from most significant bits
Apply mean clustering penalty only for these set of weights.

• Weight Set-3: No bit recovered or bit recovered without MSBs 
Train w/o any clustering penalty.
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Experimental Setup

• Dataset: Popular vision datasets (e.g., CIFAR-10/100, GTSRB).

• Architecture: ResNets and VGG.

• Attacker Data: 8 % training data available to train the substitute model.

• Training Platform: PyTorch running on GeForce GTX 1080 Ti GPU platform.

• Attack Platform: Intel Haswell series processor.

• Memory configuration: Dual-channel DDR3.
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Evaluation Metrics:
Accuracy (%) : Accuracy of the substitute model on test dataset.

Fidelity (%) : Percentage of test samples both the target and 
substitute model agree on their classification result.
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Green: Target Model Decision Boundary
Red: Substitute Model with High Fidelity
Yellow: Substitute Model with High Accuracy

Adversarial Example Attack (%): Test accuracy of a target 
model on the adversarial test samples generated using the 
recovered substitute model as shown in the left figure.
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Results: HammerLeak
HammerLeak Analysis:
• Bit leakage accuracy: 95.73% (Standard deviation: 0.74%).
• ResNet-18 weight leakage rate.

Figure: Distribution of weights with MSB recovered across 21-layers 36



Results: Mean Clustering Training

CIFAR-10
(ResNet-18)

Time
(Days)

Recovered 
(MSB)

(%)

Accuracy
(%)

Fidelity
(%)

Adversarial 
Example 

Attack (%)

Architecture 
Only

- 0 73.18 74.29 61.33

1500 Rounds 3.9 60 76.61 77.56 50.4

3000 Rounds 7.8 80 86.93 88.51 8.13

4000 Rounds 10.4 90 89.59 91.6 1.61

Best-Case
(White Box)

- 100 93.16 100.0 0.0

§ Increasing attack round generates effective substitute model with higher accuracy & fidelity.
§ At 4000 rounds, we could achieve similar adversarial example attack performance as the 

white-box attack.
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Comparison with Existing Methods:

Recovery Method Accuracy (%) Adversarial Example 
Attack (%)

Architecture only
e.g., DeepSniffer (ASPLOS 20)

72.68 62.68

DeepSteal
(Architecture + Partial Weight-

Bit Information)

90.35 1.2

§ DeepSteal shows ~18 % improvement in accuracy compared to the existing remote side-channel 
attacks which only focus on recovering the architecture only information of DNN.

§ Fine-grained bit information significantly improves the adversarial attack performance as well.
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Comparison with Existing Methods:

Attack
Threat Model

Adversarial
Example Attack (%)

Black-Box
(Transfer Cui et. al.)

20.47

White-Box
(PGD Madry et. al.)

0.0

DeepSteal
(ours)

1.2

§ DeepSteal threat model falls in the gray-
box zone (architecture known) between 
white-box and black-box attack.

§ Fine-grained bit information achieves 
almost similar success rate as the white-
box attack.
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Conclusion:

• DeepSteal with the exploitation of a remote side channel, for the first time, can 
exfiltrate fine-grained weight information in bulk from DNN model.

• DeepSteal can recover substitute model with high accuracy and fidelity (~ 90 % ).

• The adversarial examples generated from the substitute model is as effective as a 
white-box attack.

• Our proposed attack opens a practical solution to identical model recovery and 
urges the community to invest in future defense solutions.
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Thank You  &  Questions?
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