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Machine Learning (ML) Applications

= Machine Learning Applications:

 Robotics

* Medical Applications

* Self-Driving Cars
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Adversarial Threats in ML:

Model Tampering (Security)

Model Leakage (Privacy)

» External Threat (Input perturbation)
Adversarial Examples (Madry et. al. ICLR-18)

» Internal Threat (Weight perturbation)
DeepHammer (Yao et. al. USENIX SEC-20)

» Both (Trojan/Backdoor Attack)
Trojan NN (Liu et. al. NDSS-18)

Computer running
Neural Network

e & OB
+ J vv’:‘é\:
as =

A

Adversarial Input Attack

User

1 -

Gibbon

Attacking weights

!
Attacker

[Rakin et. al. USENIX SEC-21]

» Model Inversion Attack
Recover Data (Fredrikson et. al. CCS-15)

» Membership Inference Attack
Leak Training Data (Shokri et. al. S&P-17)

» Model Extraction Attack Recover Model Architecture/ Weights
DeepSniffer (Hu et. al. ASPLOS-20)

Stealing
Architecture or weights

Stealing
Data/Features




Model Extraction Attack Objective:

1. Create a substitute model to mimic the
functionality of the targe model with
limited dataset (less than 10 %).

Victim’s Target
DNN Model

2. The substitute model should have a high
accuracy and fidelity.

Goal of our DeepSteal:
Recover W,,W,,W;

3. The substitute model can
generate strong transferable adversarial
examples to attack the target model.
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Remote Side channel Attack on ML Model

Primary Goal of Prior Works:
Recover model architecture (i.e., no. of layers/connections)

Example:
Cache telepathy [USENIX Security’20], DeepSniffer [ASPLOS’20]

Opportunities:

1. None of the existing remote side-channel works have successfully recovered fine-
grained weight information.

2. Exfiltration of Weight.ilzformat_ion can potentially be even more dangerous than
leakage of architecture information.



Can we recover fine-grained weight information through the remote side channels?

How to utilize partial weight information to perform advanced model extraction?
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Threat Model

e Attacker knows the DNN model architecture.
 Attacker does not know gradient or model parameter information.
* Attacker cannot query the target model to get output scores.

 Attacker can run userspace process on the victim machine.
e System software are benign and properly protected.



DeepSteal Overview
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Data Leakage through RowHammer
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Data Leakage through RowHammer
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Data Leakage through RowHammer
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Challenges:

C1: RowHammer information leakage from generic victim application.

C2: Bulk data stealing from victim with large-scale memory footprint.



Generic RowHammering For Bit Leakage
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Generic RowHammering For Bit Leakage
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HammerlLeak Framework: Detailed
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HammerlLeak Framework: Detailed
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HammerlLeak Framework: Detailed
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HammerlLeak Framework: Detailed
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HammerlLeak Framework: Detailed

Rowhammer-based
Bit Recovery

v\©

|| | )]

© «
v\’®
”F(’@)

«
DRAM Bank

Free Page B Victim Page Attacker Page Vulnerable cell

22



Bulk data-stealing from application with large memory-footprint
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HammerlLeak: Leaking PyTorch Model
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Why do we still need training?

J Problem: How to use the partial bit information
recovered from HammerLeak?

[ Solution: We propose a training algorithm to successfully
utilize the stolen partial bit information.



Substitute Model Training:
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Substitute Model Training:
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Substitute Model Training:

1. Each weight has a
projected range.

—)

N-Bit “WNLy s W3 -Wy -W1 +W1+Wot W3 woeveeeenns +Wi2N-1)

Weight Level W‘- - - - -

Projected range of W,

Leaking MSB ¢ .
ow,

Projected range of W,

Leaking <
mse+2use) [
of W, Wmin Wmean W'max
--------------- exact weight value
Leaking !
(MSB+N-1)

of Wt Wmin Wmax

29



Substitute Model Training:

1. Each weight has a
projected range.

2. Mean clustering penalty
ensures the weights stay well
within the projected range
during training.
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Algorithm: Mean Clustering Training

* Weight Set-1: All 8-bits recovered
No Training i.e., set the gradient of the weights to zero.

* Weight Set-2: Partial bits recovered starting from most significant bits
Apply mean clustering penalty only for these set of weights.

* Weight Set-3: No bit recovered or bit recovered without MSBs
Train w/o any clustering penalty.
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Experimental Setup

» Dataset: Popular vision datasets (e.g., CIFAR-10/100, GTSRB).
* Architecture: ResNets and VGG.

» Attacker Data: 8 % training data available to train the substitute model.

* Training Platform: PyTorch running on GefForce GTX 1080 Ti GPU platform.
e Attack Platform: Intel Haswell series processor.

 Memory configuration: Dual-channel DDR3.



Evaluation Metrics:

Accuracy (%) : Accuracy of the substitute model on test dataset.

Fidelity (%) : Percentage of test samples both the target and
substitute model agree on their classification result.
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Results: HammerlLeak

HammerLeak Analysis:

 Bit leakage accuracy: 95.73% (Standard deviation: 0.74%).
* ResNet-18 weight leakage rate.
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Results: Mean Clustering Training

" |ncreasing attack round generates effective substitute model with higher accuracy & fidelity.
= At 4000 rounds, we could achieve similar adversarial example attack performance as the

white-box attack.
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Comparison with Existing Methods:

Recovery Method Accuracy (%) Adversarial Example
Attack (%)
Architecture only 72.68 62.68
e.g., DeepSniffer (ASPLOS 20)
DeepSteal 90.35 1.2
(Architecture + Partial Weight-
Bit Information)

= DeepSteal shows ~18 % improvement in accuracy compared to the existing remote side-channel
attacks which only focus on recovering the architecture only information of DNN.

" Fine-grained bit information significantly improves the adversarial attack performance as well.



Comparison with Existing Methods:

Attack Adversarial
Threat Model Example Attack (%) | » peepSteal threat model falls in the gray-
box zone (architecture known) between
Black-Box 20.47 white-box and black-box attack.

(Transfer Cui et. al.)

" Fine-grained bit information achieves

White-Box 0.0 almost similar success rate as the white-
(PGD Madry et. al.)
box attack.

DeepSteal 1.2
(ours)




Conclusion:

* DeepSteal with the exploitation of a remote side channel, for the first time, can
exfiltrate fine-grained weight information in bulk fromm DNN model.

* DeepSteal can recover substitute model with high accuracy and fidelity (~ 90 % ).

* The adversarial examples generated from the substitute model is as effective as a
white-box attack.

* Our proposed attack opens a practical solution to identical model recovery and
urges the community to invest in future defense solutions.
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