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Abstract—As the popularity of graphics processing units
(GPUs) grows rapidly in recent years, it becomes very critical
to study and understand the security implications imposed by
them. In this paper, we show that modern GPUs can “broadcast”
sensitive information over the air to make a number of attacks
practical. Specifically, we present a new electromagnetic (EM)
side-channel vulnerability that we have discovered in many GPUs
of both NVIDIA and AMD. We show that this vulnerability can
be exploited to mount realistic attacks through two case studies,
which are website fingerprinting and keystroke timing inference
attacks. Our investigation recognizes the commonly used dynamic
voltage and frequency scaling (DVFS) feature in GPU as the
root cause of this vulnerability. Nevertheless, we also show that
simply disabling DVFS may not be an effective countermeasure
since it will introduce another highly exploitable EM side-channel
vulnerability. To the best of our knowledge, this is the first work
that studies realistic physical side-channel attacks on non-shared
GPUs at a distance.

I. INTRODUCTION

Over the past few years, graphics processing units (GPUs)
have become an integral part of modern computer systems,
which are used not only for graphics rendering but also for
intensive parallel computing. Given the fact that many tasks
running on a GPU operate on sensitive information, concerns
about the security of GPUs, especially potential information
leakage, have been raised. Several recently developed attacks
on GPU have justified such concerns [11], [20], [21], [27],
[30], [33], [41], [47], [65].

Although these existing GPU attacks focus on different
application scenarios, they all require that GPUs be either
logically shared with or physically accessible1 to adversaries.
If an attacker has no physical or logical access to the GPUs
used by her targets, is it still possible that the attacker can
steal sensitive information from such GPUs? In this paper, we
answer this question affirmatively by presenting a new physical
side-channel vulnerability of modern GPUs as well as some
examples of its exploitation.

Specifically, we have discovered certain electromagnetic
(EM) emanations2 from GPUs which are: 1 exploitable –
we find that these EM signals are computation-dependent and
can reveal fine-grained information about the ongoing activity;
and 2 easy to measure – we find that such EM signals are
strong and can propagate very far (e.g., more than 6 meters in

1In [11], although contactless, the attack needs to remove GPU’s heat sink
and place a probe near GPU chip surface. In [30], it is the power supply of
the computer rather than the GPU that is instrumented by the attacker.

2In this paper, we use EM emanations and EM signals interchangeably.

many cases) as well as even penetrate thick walls. A further
investigation reveals that the root cause of such exploitable
far-field EM emanations is the dynamic voltage and frequency
scaling (DVFS) feature of GPU, which has been playing an
important role in either saving energy or improving GPU
performance [1], [34], [42].

By exploiting the discovered EM side-channel information,
for the first time, we demonstrate that it is not only possible but
also practical to mount realistic eavesdropping attacks. Given a
victim who uses a modern GPU without sharing, we show that
an attacker can spy on the victim and identify the webpages
visited by the victim (i.e., website fingerprinting attack) with a
high accuracy. In addition, we show that the keystroke timings
of the victim can be further inferred, which may be used to
recover typed words or passphrases [54], [62]. As the attacker
can be several meters away from the victim and the attacker
can even hide in a separate cubicle or room, the presented
attacks are in effect extremely stealthy.

To the best of our knowledge, our work serves as the first
physical side-channel attack on non-shared GPUs at a distance.
Prior to our work, there are only a few studies on leveraging
physical side effects of GPU computation (e.g., power [30]
or near-field EM [11]) to breach confidentiality, but all of
them require physical access to the GPUs. On the contrary, we
discover and exploit a far-field EM side-channel vulnerability,
which empowers more practical attacks without too unrealistic
proximity requirements.

Even outside of the GPU security area, we find that most of
the existing long-range EM-based attacks are to build covert
communication channels [16], [51], [52], [61]. Surprisingly
(or not), there are not many works showing that it is possible
to mount EM side-channel attacks on modern computers to
steal sensitive information from several meters away. This is
because EM emanations that are both far-field and exploitable
for eavesdropping attacks appear to be hard to discover. Thus,
our work also serves as a good demonstration of long-range
EM side-channel attacks.

The main contributions of this paper are as follows:

• We present a new EM side-channel vulnerability that we
have discovered in modern GPUs and can be exploited to
carry out attacks at a distance and/or through a wall. We
identify the ubiquitously used DVFS as the root cause of
this side-channel and find that such a vulnerability exists
in many GPUs of both NVIDIA and AMD.



• We formulate a signal processing framework to address
the challenges introduced by potential EM shielding and
strong noise contamination. With the proposed tech-
niques, we can exploit the EM emanations of interest even
when they are greatly attenuated or they are overwhelmed
by strong legitimate communication signals.

• We conduct two case studies on the exploitation of this
newly found EM side-channel vulnerability. The first
one is a website fingerprinting attack, and up to 93.2%
accuracy can be achieved in a scenario where the attacker
and victim are 6 meters apart. The second case study is
a keystroke timing inference attack, where we show that
keystroke events can be reliably detected to deduce inter-
keystroke times.

• We show that even though disabling GPU DVFS can be
an effective approach to mitigating the discovered EM
side-channel vulnerability, it will unfortunately introduce
another new one into many GPUs which can be exploited
to mount comparable EM side-channel attacks. We also
discuss some potential countermeasures.

As DVFS has been used or may appear in many other hardware
components [5], [8], [23], [37], [38], our research also gives
a pointer to what may need additional attention during certain
security investigations. (Note that Sehatbakhsh et al. have also
pioneered exploiting EM emanations affected by DVFS to
carry out attacks [51], and we discuss the differences between
their work and ours in Section X.)

Responsible Disclosure. We have reported our findings to
both NVIDIA and AMD. NVIDIA replied to us that “NVIDIA
is continually investigating ways to minimize board emissions
in future product designs and will take these findings and
recommendations under advisement”. AMD informed us that
their engineering team reviewed the issue and “no effective
mitigations or fixes have been identified”.

II. BACKGROUND

In this section, we provide a brief overview of GPU archi-
tecture and GPU DVFS feature. Note that, in this paper, we do
not consider any integrated GPUs in CPU processors, namely
the term GPU is used to indicate the discrete ones designed
by NVIDIA or AMD only. Moreover, we briefly present the
physical side effects exploited in this paper, namely the EM
emanations.

A. GPU Architecture

GPUs have evolved from hardwired graphics accelerators
into highly parallel programmable computing devices. Usu-
ally, a modern GPU contains a number of single-instruction
multiple-thread (SIMT) processors. Each SIMT processor has
many simple GPU cores, and each core can perform scalar
integer and floating-point arithmetic operations. Such SIMT
processors are called streaming multiprocessors by NVIDIA
and compute units by AMD. SIMT processors manage, sched-
ule, and execute groups of parallel threads, which are named
warps and wavefronts in the terminology of NVIDIA and
AMD respectively.

To store large amounts of data, a modern GPU normally
has several gigabytes of memory. Such large GPU memory
is shared by all the SIMT processors on the GPU, and
consists of multiple memory modules. These memory modules
are of special DRAM type tailored for use in GPUs (e.g.,
GDDR5 and GDDR6). In general, a GPU needs high memory
bandwidth to sustain its high computational throughput, and
there are multiple memory controllers used to enable massively
parallel access to the memory modules to reach the desired
bandwidth. The GPU memory is independent of the main
memory on the host side and also managed in its own manner.
Data transfers between the main memory and GPU memory
are via the PCIe bus.

B. Dynamic Voltage and Frequency Scaling

DVFS is a power management technique that has been
widely used with respect to CPUs [60]. It dynamically changes
voltage and frequency to adjust performance for power sav-
ings.3 Instead of always staying at the highest level, perfor-
mance is actively regulated according to current workloads,
which can make very efficient use of energy.

As GPUs continue to grow powerful, their increasing power
consumption has become a radical problem. To address this
problem, the DVFS technique has been applied to GPUs. In
fact, almost every modern GPU provides hardware support for
DVFS [42]. For a GPU, DVFS governs the supply voltage and
frequency of both its cores and memory.

Normally, there are multiple performance levels specified
by GPU DVFS. (The performance levels are often called per-
formance/power states, namely, P-states.) Each performance
level defines a setting of voltage and frequency for the GPU
cores and memory. (At a performance level, the frequency
and/or voltage of the GPU cores may not be fixed but can
vary within a specific range, while the frequency of the GPU
memory usually does not change.) GPU DVFS dynamically
switches performance levels to meet the current computation
needs and minimize power draw, heat generation, and fan
noise. In general, the approach to determining performance
levels in official GPU drivers is proprietary and not well-
documented. The default GPU DVFS approach is employed
automatically, although an end user may choose to disable
its functionality by manually setting fixed frequencies or to
provide a customized approach [31].

C. Electromagnetic Emanations

Given the fact that electric current in the circuitry of a device
varies with time, EM emanations inevitably arise. The EM
emanations generated by a computer system are distributed
widely in the spectrum. As these EM signals generally carry
information about the underlying electronic activities, which
can be linked with certain high-level activities, some of them
have been leveraged in the context of security for attacks [2],
[12]–[14], [25], [51] as well as defenses [17], [43], [64].

3DVFS principally reduces dynamic power consumption PD , which is
proportional to the voltage V quadratically and frequency f linearly, namely,
PD ∝ V 2 × f .



Although the sources of many of the EM emanations are
unknown, a few of them are in effect easy to determine, e.g.,
emanations generated by some components whose activities
are periodic, such as voltage regulators and DRAM clocks [3].
The EM signals created by these components having periodic
switching behavior are also strong and may propagate to a
distance of several meters. Interestingly, some of these signals
may be unintentionally modulated by other activities in the
form of amplitude-modulation (AM) or frequency-modulation
(FM) [3], [48]. For example, the EM signals created by voltage
regulators may be AM-modulated by activities in the circuits
they power. Therefore, these signals act as carrier signals that
convey information about the modulating activities. Moreover,
to measure these far-field EM signals, very simple equipment
suffices. For instance, a whip antenna and a cheap software-
defined radio (SDR) device are adequate [51], [64].

III. THREAT MODEL

We assume that there is an attacker who intends to eaves-
drop on a victim to extract some of his/her sensitive informa-
tion, e.g., the webpages the victim is browsing. The attacker
is in the proximity of the victim, but they may still be well
spaced apart. For example, the attacker and the victim may be
colleagues or neighbors. Furthermore, they may be physically
isolated from each other. For instance, the victim may be in
a separate cubicle, office, or apartment, to which the attacker
has no access.

The victim uses a desktop computer system which is
equipped with a discrete GPU. (We do not consider laptops
or other mobile computing devices in this threat model.) The
GPU may be a product of either NVIDIA or AMD. We assume
that the victim uses the official driver and its default settings,
which is the most prevalent case in reality. The attacker is
assumed to be able to find and employ the same type of GPU
as the one used by the victim for profiling. (The attacker may
have known what GPU the victim is using, but if this a priori
knowledge is not available, we will show that the attacker may
still be able to deduce it.) Unlike the prior work on GPU side-
channel or memory dump attacks [27], [33], [41], [65], we do
not require that the use of the GPU or any other computational
resources be shared between the victim and the attacker. We
neither require the presence of any software vulnerabilities.

IV. NEW EXPLOITABLE EM EMANATIONS

Given the aforementioned threat model, an attacker may opt
for EM side-channel attacks, because (1) they are passive and
non-intrusive; and (2) they may be mounted at a distance and
work through walls. Nevertheless, one challenging problem is
to find certain exploitable EM signals which may hide in any
place of the spectrum. In this section, we present our newly
discovered, exploitable EM emanations that are generated by
the memory clock in a modern GPU.

A. EM Signal of GPU Memory Clock

First of all, we show the characteristics of the EM emana-
tions of interest. As mentioned in Section II-B, GPU DVFS

defines multiple performance levels, and it switches between
these levels in accordance with the current GPU workloads.
In other words, the clock frequencies of the GPU cores
and memory often change. Clocks usually create strong EM
emanations, and hence when a performance level is on/off, we
expect to observe the appearance/disappearance of clear EM
signals at the corresponding clock frequencies in the spectrum.
To verify this anticipated feature, we test several AMD and
NVIDIA GPUs made by different vendors and equipped with
different types of GDDR, which are listed in Table I. These
GPUs are very commonly used, and almost all the recent
architectures of AMD and NVIDIA are covered by them,
including the latest NVIDIA Ampere architecture.

We alter the performance level of each GPU, and examine
the spectral behavior at the corresponding core and memory
frequencies. The inspection results are as follows: (1) the EM
emanations generated by the GPU core clock can be hardly
found; but, (2) the EM signal of the GPU memory clock is
very noticeable and its behavior matches our anticipation; and
(3) interestingly, the EM signal consists of many frequency
components that are over a wide range in the spectrum. For
example, Figure 14 illustrates (2) and (3) when the first GPU
in Table I (i.e., AMD Radeon RX 580) is used.
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Fig. 1: Spectra around 2000 MHz in the case of using AMD
Radeon RX 580: (A) when GPU memory clock frequency is
600 or 4000 MHz, and (B) when frequency is 2000 MHz

Figure 1 (A) shows that we can barely see any signal energy
around 2000 MHz if RX 580 memory clock is not set to the
corresponding level. On the other hand, Figure 1 (B) shows
that we can clearly observe the EM signal of RX 580 memory
clock in the frequency-domain when the clock is set to 2000
MHz. Moreover, we can see that the signal has a large number
of spectral components in the frequency range below 2000
MHz. The reason for such a phenomenon is due to the use
of a hardware feature called spread spectrum clocking (SSC)
for meeting electromagnetic compatibility (EMC) regulations.
EMC standards impose allowable limits on EM signal energy
at any frequency above 30 MHz, and many clock signals (e.g.,
the GPU memory clock) are strong enough to violate such
legal limits. To achieve EMC, SSC uses FM-modulation to
vary the clock frequency over a range so that the time spent
by the clock signal at a particular frequency is reduced and
the energy is spread over that range of frequencies [18].

4The power spectral density (PSD) is computed using the Welch’s method.
The FFT size is 8192, and a Hamming window is used. Ten segments without
overlap are averaged.



TABLE I: List of GPUs investigated in this paper
GPU Card (Vendor) Architecture Memory WCK Frequencies Release Data

AMD Radeon RX 580 (GIGABYTE) GCN 4.0 8 GB GDDR5 600 MHz, 2000 MHz, 4000 MHz Apr. 2017
AMD Radeon RX 5600 XT (MSI) RDNA 1.0 6 GB GDDR6 400 MHz, 2000 MHz, 2500 MHz, 3500 MHz Jan. 2020
AMD Radeon RX 5700 XT (XFX) RDNA 1.0 8 GB GDDR6 400 MHz, 2000 MHz, 2500 MHz, 3500 MHz Jul. 2019
NVIDIA Geforce GTX 1080 (PNY) Pascal 8 GB GDDR5X 405 MHz, 810 MHz, 4513 MHz, 5005 MHz May 2016
NVIDIA Geforce GTX 1650 (MSI) Turing 4 GB GDDR5 405 MHz, 810 MHz, 4001 MHz Apr. 2019

NVIDIA Geforce RTX 3060 OC (ASUS) Ampere 12 GB GDDR6 405 MHz, 810 MHz, 5001 MHz, 7301 MHz, 7501 MHz Jan. 2021

Note that, since GDDR5, GPU memory operates with two
types of clocks. One type is referred to as command clock
(CK) that is used for sending commands and addresses, and
the other one is referred to as write clock (WCK) that is used
for data reads and writes. The EM emanations of interest are
specifically generated by the WCK. In the case of GDDR5, the
frequency of WCK is half the data rate [35]. In the cases of
GDDR5X and GDDR6, the frequency of WCK is half the data
rate if the operating mode is set as double data rate (DDR), or
one fourth the data rate if the operating mode is set as quad
data rate (QDR) [36].

Since many GPUs have different sets of WCK frequencies,
an attacker may exploit this fact to find out what GPU is being
used by a victim if this knowledge is unknown to the attacker
beforehand. Essentially, the attacker monitors the spectrum at
all of the possible WCK frequencies and uses the appearance
of the EM signals similar to the one shown in Figure 1 (B) to
determine which WCK frequencies the target GPU has. Such
reconnaissance information can be used to pinpoint potential
GPUs.

B. Activity Identification

To be exploitable, the EM emanations should be
computation-dependent so that high-level activities can be
inferred to reveal certain sensitive information. We notice that
the performance level of a modern GPU is usually changed
rapidly to seek a balance between performance and power
consumption. Given a computational activity that creates some
GPU workloads, there can be multiple GPU performance level
switches during the activity. As different activities potentially
impose different loads on GPU at different times, distinct per-
formance level switching behaviors should be induced, which
can thus serve as activity signatures. In the above discussion,
we have learnt the correlation between the performance level
switches and the appearance/disappearance of targeted EM
signals, which implies that the EM emanations of interest can
be leveraged to identify different activities.

To fully capture the behavior of performance level switch-
ing, we may try to monitor all of the frequency ranges where
the GPU memory clock signals can arise in a synchronized
manner. However, our experiments show that such a heavy-
weight approach to gaining a complete picture of switching
behavior is not necessary, but a partial picture concentrating
on when a specific performance level is switched on/off suf-
fices to distinguish different activities. For instance, Figure 2
demonstrates the spectrograms when launching three different
programs, that are Chrome, Firefox, and LibreOffice Writer, on
a system equipped with an AMD Radeon RX 580 GPU. (The

OS is Ubuntu 18.04 and the GPU driver is AMDGPU 20.20.)
The frequency range on which we focus corresponds to the
second lowest WCK level (c.f. Table I and Figure 1). As we
can see from the figure, the patterns of stripe appearance on the
spectrograms are distinguishable from each other and we have
also verified that they are fully repeatable. Thus, such patterns
can be treated as fingerprints to help infer which program is
being launched.
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Fig. 2: Spectrograms having frequency range of 20 MHz
centered at 2000 MHz when launching three applications on
a system equipped with an AMD Radeon RX 580 GPU

Therefore, we need only to consider one specific frequency
of WCK and keep track of when the corresponding EM
signal energy appears and disappears in the focused frequency
range to gain knowledge (e.g., in the form of spectrogram)
that can be exploited for activity identification. Theoretically,
we may choose any of the possible WCK frequencies, but
empirically, we find that the second lowest one generally
yields the optimal exploitation results. The reasons for the
second lowest WCK frequency being a better choice than
others include: (1) this frequency is reached much more often
than the other higher ones, especially when an activity does
not use the GPU intensively; and (2) we notice that it normally
has a higher signal-to-noise ratio (SNR) than the lowest one.
Thus, in the following, if not otherwise specified, we focus on
the EM emanations generated by the WCK when switched to
its second lowest level.

Note that, to further substantiate the tight correlation be-
tween the patterns of stripe appearance on the spectrograms in
Figure 2 and the WCK frequency switching behavior, we also
obtain the traces of GPU memory clock frequency changes via



0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

600

2000

4000
W

C
K

 F
re

q
u

e
n

c
y
 (

M
H

z
)

0

0.5

1

M
a

g
n

it
u

d
e

Fig. 3: Traces of WCK frequency alterations and averaged
magnitude with respect to Figure 2 (A)

an interface exposed by the AMD GPU driver5 and compare
the traces with the spectrograms. The experiments verify that
the patterns well match the frequency change traces, and
Figure 3 shows such an example corresponding to Figure 2
(A), i.e., launching Chrome. In Figure 3, we can see that the
WCK frequency is switched among its three possible levels
(namely the blue dashed line), and we make the line segments
solid and bold when the WCK frequency is switched to its
second lowest one, namely, 2000 MHz. For each of the spectra
constituting the spectrogram in Figure 2 (A), we plot the
average of the magnitudes in the frequency range from 1990
MHz to 2000 MHz (namely the red solid line). As we can see
from the figure, the local peaks of the averaged magnitude
match closely with the line segments indicating that the WCK
is switched to 2000 MHz.

C. Propagation Distance and Wall Penetration

To exploit a physical side-channel in an air-gapped setting,
we also need to consider how far it can propagate and whether
it can go through obstacles like a wall. To this end, we have
performed several experiments on the GPUs listed in Table I
and found that the EM emanations of interest have a desirable
wall-penetrating property and can be measured by an attacker
from a distance long enough to carry out attacks practically.
The experiments are performed using an SDR device, USRP
B210, and an ultra-wideband directional antenna, RFSPACE
UWB-3. (We also tried a much cheaper device, LimeSDR,
and derived very similar results.) More details about the
corresponding setup can be found in Appendix A.

Fig. 4: The definition of directions used in this paper

Figure 5 shows the distances with respect to the directions
from which the EM emanations of interest can still be “picked
up” when there is no obstacle in between the GPU machine
and the antenna. Here we define “pick up” as that the SNR
after applying the technique described in Section V is at least
7 dB. In general, we can find that the longest measurement
distance changes with the direction. Note that, due to our
office space limitation, the maximum distance we can reach

5The interface is /sys/class/drm/card0/device/pp_dpm_mclk
that does not give WCK frequency directly. In terms of AMD Radeon RX
580, we need to double the reading to get the current WCK frequency.

is 6 meters. The definition of directions is illustrated in
Figure 4. We can see that 0° is defined as when the antenna is
orthogonal to the case side from which the motherboard and
GPU are installed, and 90° is defined as when the antenna is
perpendicular to the front side of the case.

(A) Modern-looking case
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Fig. 5: Propagation distance (no obstacles in between)

Figure 5 shows two scenarios in which two types of
computer cases are used. In the first scenario, a modern-
looking computer case with a translucent side panel is used
(as shown in Figure 4), and in the second scenario, a computer
case whose every side is made of metal is used. Comparing
Figure 5 (A) and (B), we can observe that the translucent
side panel in the first scenario benefits the propagation of
the exploitable EM signals. As illustrated by Figure 5 (A),
when a modern-looking case is used, we can capture the EM
emanations of our interest from more than 3 meters away in
almost every direction no matter which GPU is used. On the
other hand, in the second scenario, the all-metal computer case
can attenuate the strength of the EM signals in the directions
from 270° to 90° counter-clockwise, but the signals of our
interest can still be picked up at a distance of 3 meters or more
in many other directions for each GPU. Notice that, nowadays,
modern-looking computer cases with a translucent side panel
dominate the market [44] and are in effect extremely popular
among users of mid-range to high-end GPUs. Therefore, in
reality, it is very likely that an attacker can easily capture the
EM emanations of interest at a very far distance. Even if a
computer case with all metal sides is used, the exploitable
EM signals can still be measured from several meters away.

TABLE II: The signal strength reduction due to the walls
RX 580 RX 5600 RX 5700 GTX 1080 GTX 1650 RTX 3060

Plaster Wall -1.06 dB -1.03 dB -1.18 dB -1.32 dB -0.21 dB -0.51 dB
Concrete Wall -4.41 dB -4.28 dB -6.92 dB -8.64 dB -5.24 dB -4.50 dB

We also isolate the GPU machine having the modern-
looking computer case in two rooms and test if the EM
emanations of our interest can be captured from the outside
of the rooms. The first one is an office room whose wall is
as thick as 15 cm and made of plaster, and the second one
is a lab room which has very thick concrete walls (∼15 cm).
We measure and compare the strengths of the exploitable EM
signals when the antenna and the target machine are separated
by 1 m with and without the walls in between. Table II shows
the EM signal strength reduction due to the walls. From the



results, we can observe that the plaster wall can only reduce the
EM signal strength by at most 1.32 dB while the concrete wall
can reduce the strength by up to 8.64 dB. These results indicate
negligible effects of normal plaster walls and manageable
effects of thick concrete walls on potential attacks exploiting
this newly discovered EM side-channel vulnerability.

V. SIGNAL TRANSFORMATION AND ENHANCEMENT

Although we may directly exploit the derived spectrograms
like the ones shown in Figure 2 to identify activities, it can
become very difficult to do so under circumstances where the
SNR is too low to induce visible stripes on the spectrograms.
To address this problem, we introduce two signal processing
techniques that can preserve the target signal’s appearance and
disappearance patterns even when the SNR becomes very low.6

A. Time Series Derivation

As mentioned in Section IV-A, SSC is used to spread the
energy of a clock signal over a frequency range for meeting
the EMC regulations. Given a clock whose frequency is fc,
SSC in effect scatters its energy to a series of N sub-clocks
at fc − nfm, where 0 ≤ n < N and fm is the modulating
frequency [52]. Typically, fm is 30 to 33 kHz. Due to factors
like path loss or better EM shielding, the power of such
sub-clock signals may become too weak compared to the
background noise. Inspired by the work in [52], we leverage
the folding technique to amplify the manifestation of the
targeted memory clock signal being present.

Assume we perform an M -point discrete Fourier transform
(DFT) to derive a spectrum X . Since the frequencies of the
sub-clocks are separated by fm, they should be separated by
∆ DFT bins in X , where

∆ = fm ×
M

fs
, (1)

and fs is the sampling rate. Let us define S[i] as the sum of
the magnitudes of the ith, (i−∆)th, · · · , [i− (N − 1)×∆]th

DFT bins of X , namely we have

S[i] =

N−1∑
j=0

X[i− j ×∆] . (2)

If the clock frequency fc is located in the kth bin of X , S[k]
can be treated as the accumulated energy of all the sub-clocks,
and it will reach a much higher value compared to any S[i]
where i 6= k, given the fact that sub-clocks coherently increase
the power at the corresponding frequency locations.

Therefore, given a sequence of sampled values, it is divided
into subsequences without overlap and each subsequence has
L samples. (We should have L ≤M , and if L < M , it is ex-
panded to M using zero-padding.) For the ith subsequence, we
calculate S[k]i, and again the kth bin in X contains the highest
sub-clock’s spectral content. The sequence {S[k]0, S[k]1, · · · }
will be the one-dimensional time series data derived from

6The implementation is available at https://github.com/0x5ec1ab/gpu-mem-
em-sig-processing.

the measured EM emanations. We show an example of this
technique in Appendix B.

Note that, although fm is unknown to us, it can be exhaus-
tively searched given the fact that its search space is small (30
to 33 kHz). An incorrect fm will not produce noticeably high
S[k]’s. Another unknown parameter is N , i.e., the number of
sub-clocks. Nevertheless, we do not need to know the exact
number. The GPU memory sub-clocks generated by SSC span
at least 4 MHz, which means that there are at least 121 sub-
clocks even when fm is 33 kHz. Thus, the number 120, which
is large enough to make S[k] stand out, may be chosen as N
if no other information is available.

Another issue is that although fc is known and theoretically
fixed, it may still vary in a small range due to clock jitters;
hence, if the DFT frequency resolution is fine-grained (e.g.,
in this paper we use 100 Hz), the kth bin computed directly
from fc may not be the one where the highest sub-clock truly
locates. To address this problem, we compute multiple S[i]’s
around k and update k to the one whose result is significantly
larger than others.

It is worth highlighting that, aside from coping with the low
SNR problem, using this time series derivation technique can
also help separate signals generated by multiple similar GPUs.
Given two GPUs having the same second lowest WCK, their
generated signals in the spectrum can be mingled together; yet,
we observe that the kth bin of fc for one GPU may be different
from the kth bin for the other one (e.g., due to imperfection of
clocks), and thus two independent traces can be derived. For
more detailed discussion, please refer to Appendix C.

B. Strong Noise Contamination Effect Reduction

The second lowest WCK frequency of all NVIDIA GPUs
is 810 MHz, and their SSC sub-clocks are distributed in the
800 MHz – 810 MHz frequency band. In certain areas, this
band may be too noisy for us. For instance, in North America,
the Federal Communications Commission allocates the 614
MHz – 806 MHz frequency band for TV communication use.
The contamination induced by such strong background noise
makes it very difficult to find the correct sub-clock positions
using the aforementioned technique. As an example, Figure 6
(A) shows a spectrum where communication signals exist, and
we cannot rely on comparing different S[i]’s around the initial
k to find where the highest sub-clock truly locates, because
one significantly large noise peak can easily dwarf the sum of
all the sub-clocks.
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Fig. 6: Spectrum comparison: (A) the original spectrum X ,
and (B) the derived spectrum X ′ after the proposed operation
is performed



To address this issue, we propose to process the spectrum X
using a convolution kernel [−0.5, 1, −0.5]. In other words,
we derive X ′ from X as

X ′[i] = −1

2
X[i− 1] + X[i]− 1

2
X[i + 1] , (3)

and replace X with X ′ in Equation 2. Note that, after this
operation, the local peaks originally in X should have positive
values in X ′; otherwise, negative values. Thus, this operation
will pinpoint all the local peaks which include (most of)
the sub-clocks. Figure 6 (B) shows the spectrum after the
operation is performed on the one in Figure 6 (A).

The reason why using X ′ can help reduce the negative effect
of strong background noise on finding the correct sub-clock
positions is that: (1) if the highest sub-clock is in the jth bin,
S[j] will sum up the bins which are certainly dependent (as
they correspond to sub-clocks), and thus it should be a positive
value; but (2) if the highest sub-clock is not in the jth bin, S[j]
will be the sum of bins which are independent, and given
the fact that the kernel makes the expectation of randomly
summing up X ′ bins be 0, S[j] is very likely to be close to 0
in this case. Therefore, we can still find the correct sub-clock
positions even in the presence of strong background noise.
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Fig. 7: Time series comparison: (A) time series derived from
X’s, and (B) time series derived from X ′’s

Figure 7 demonstrates the effectiveness of our approach
in the context of NVIDIA RTX 3060 being used with the
existence of strong background noise as in Figure 6 (A). The
EM signal of the second lowest WCK should appear around
every 0.5 s, namely, there should be a peak in the derived
time series about every 0.5 s. However, due to the strong
noise contaminating the frequency band of our interest, the
peak appearance pattern is completely incorrect in Figure 7
(A). After applying the proposed approach, we can observe
the correct peak appearance pattern in Figure 7 (B).

VI. CASE STUDY 1: WEBSITE FINGERPRINTING

In Section IV, we have illustrated that GPU performance
level switching patterns derived from the EM emanations of
interest can be exploited to identify which application is being
launched by a user. To further exemplify the exploitability of
this DVFS-induced EM side-channel vulnerability, we show a
case study in this section where an attacker can leverage this
vulnerability to infer which webpages have been visited by a
victim user, namely, to mount a website fingerprinting attack.

A. GPU-Accelerated Webpage Rendering

When browsing websites, the GPU is actually involved in a
much more complicated fashion than simply showing pages on
the screen. Modern web browsers such as Chrome and Firefox
use GPU not only for displaying but also for helping webpage
rendering.

Webpage rendering is a procedure that translates an HTML
file along with its associated cascading style sheets (CSS) and
JavaScript code into a rasterized image. The whole procedure
consists of multiple stages: it builds a document object model
(DOM) tree, calculates the style for each DOM node, creates
the layout of the page, separates the DOM-represented page
into layers, rasterizes each layer, and combines the rasterized
results into a final screen image [24]. In such a complicated
procedure, GPU is often leveraged to accelerate operations
that involve large numbers of pixels. For example, a layer is
normally divided into a grid of tiles, and these tiles need to be
rasterized into bitmaps which are then uploaded to the GPU as
textures. In the presence of GPU-accelerated rasterization, the
GPU may be directly used to rasterize many tiles into textures,
based on certain heuristics (e.g., if the tiles can be affected
by animations or transition effects, it is better to employ
the GPU). In addition, the GPU can be used to accelerate
compositing textures into screen images.

B. EM-Based Website Fingerprinting

As stated above, GPU is extensively used during webpage
rendering in a modern web browser. Since different webpages
have different designs and contents, rendering them are likely
to have different GPU workloads generated. In the light of the
investigation presented in Section IV-B, such differences in
workloads should be able to induce different patterns of GPU
performance level switches, and these patterns can be captured
approximately through monitoring the EM emanations of the
GPU memory clock at a specific frequency. Exploiting such
derived patterns, we should be able to distinguish the rendered
webpages from each other (i.e., fingerprinting).
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Fig. 8: Time series derived from the EM emanations that are
measured when opening three websites using Chrome on a
system equipped with an AMD Radeon RX 580 GPU



Specifically, we monitor the EM emanations generated by
the WCK at its second lowest frequency and leverage the
techniques described in Section V to derive time series to
fingerprint webpage rendering activities. To illustrate this, we
use three popular websites, Google, Amazon, and Youtube,
as an example, and compare the time series derived from the
signals captured when opening these three websites in Chrome
on a system equipped with an AMD Radeon RX 580 GPU.
Chrome uses GPU-accelerated webpage rendering by default.
Accordingly, rendering the homepages of these three websites
should create different GPU workloads, as their contents differ
significantly (e.g., Google homepage is more concise, Amazon
has more animations, and Youtube is populated with videos).
Figure 8 shows the corresponding time series, and as expected,
we can notice clear differences between them.

From Figure 8, we can observe that the peaks in the time
series data appear very frequently corresponding to Youtube
and Google. In terms of Youtube, when opened, it has some
video being played, which will continuously employ the GPU
for displaying (or even decoding); yet, we can still see the
adjustment of the performance level due to GPU DVFS. In
terms of Google, it has a blinking text cursor in its input box,
whose blinking rate is about 1.67 Hz; and every time it blinks,
the affected tiles need to be re-rasterized and screen image
needs to be re-composited by the GPU. We can see that after
the initial 1 s, the interval between each wide peak in Figure 8
(A) is about 600 ms, which matches the periodic blinking
behavior of the cursor. Although not shown in Figure 8 (B),
Amazon also induces periodic peak appearance in the time
series data at about 0.2 Hz due to its animated advertisement
pictures that are switched about every 5 s.

Notice that users normally tend to have multiple tabs opened
in a browser. We find that using multiple tabs does not affect
our website fingerprinting at all. The reason is that popular
browsers like Chrome and Firefox only send the workloads of
the currently focused tab to the GPU for optimizing resource
utilization. To verify this, we use Chrome or Firefox to open a
website in a tab while having several other tabs with Youtube
playing videos, and we confirm that the EM signal pattern of
interest is not disturbed by other unfocused tabs. An example
is given in Figure 9, where we are watching a Youtube video
in a Chrome tab (0 – 2.8) until we open a new tab (2.8 – 3.2)
with the video still being played in the prior tab, and then we
open Twitter in this new tab (4.2 – 5.4). The figure illustrates
the above statement clearly. Moreover, the figure further shows
that we can identify possible start points of webpage rendering
in a long trace.
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Fig. 9: Time series corresponding to watching a Youtube video
in a Chrome tab and later opening another website in a new
tab (performed w.r.t. NVIDIA RTX 3060)

While using multiple tabs has no impact, changing browser
window size may affect the webpage rendering workloads and
thus has a negative impact on our website fingerprinting. Even
so, it is observed that most people (if not all) just use the full
window size when using a web browser. Therefore, this impact
may not be critical in reality.

C. Evaluation

Because our main intention is to showcase the exploitation
of the newly discovered EM side-channel, the evaluation is
just performed in a closed-world scenario, where a victim is
assumed to visit a list of popular websites and an attacker
tries to pinpoint the webpages browsed by the victim from
the set of possibilities. The open-world scenarios need novelty
detection, which is left as our future work, where we may use
some recently proposed techniques [46], [49].

We evaluate the EM-based website fingerprinting technique
on all the GPUs listed in Table I. The evaluation is focused on
Chrome web browser, since it dominates the market share7. In
the evaluation, no Chrome extensions are installed. Note that,
as studied in [55], some browser extensions can affect what is
rendered on a webpage and hence affect the generated GPU
workloads such that the GPU performance level switching
patterns become affected. In practice, an attacker may need to
take into account the popular extensions (e.g., AdBlock and
Ghostery) during profiling.

We try to use different operating systems, but we surpris-
ingly observe that all the AMD GPUs under Windows seldom
change the performance level when opening a website. (This
phenomenon should be caused by its driver, and we leave the
further inspection to our future work.) Therefore, we evaluate
the attack on AMD GPUs only under Linux, where the official
driver AMDGPU 20.20 is used. In contrast, the attack can be
mounted against all the NVIDIA GPUs under either Windows
or Linux. We pair NVIDIA GTX 1080 with Linux where the
official Linux driver 450.51.06 is installed, and pair NVIDIA
GTX 1650 with Windows where the official Windows driver
461.40 is installed. For NVIDIA RTX 3060, we evaluate the
attack under both Windows and Linux. Table III summarizes
these circumstances.

TABLE III: Feasibility of website fingerprinting attack under
Windows and Linux

RX 580 RX 5600 RX 5700 GTX 1080 GTX 1650 RTX 3060

q 7 7 7 3 3* 3*

± 3* 3* 3* 3* 3 3*

The symbol 3 indicates that website fingerprinting can be performed.
The symbol 7 indicates that website fingerprinting cannot be performed.
The symbol * indicates that the evaluation is performed in this section.

We use an USRP B210 SDR and a RFSPACE UWB-3
antenna to capture the EM signals of interest, and we use the
GNU Radio to manage the entire measurement process and
process the captured raw data. The SDR is tuned to the second
lowest WCK frequency of the corresponding GPU, and is set

7According to NetMarketShare, Chrome has around 70% browser market.



to use a 25 MHz sampling frequency8. More details about this
setup can be found in Appendix A.

TABLE IV: Different spots where EM signals are measured
Nearby Spots Distance Direction Faraway Spots Distance Direction

N1 0.5 m 315° F1 3 m 315°
N2 1 m 315° F2 6 m 315°
N3 0.5 m 0° F3 3 m 0°
N4 1 m 0° F4 6 m 0°
N5 0.5 m 30° F5 3 m 30°
N6 1 m 30° F6 6 m 30°
N7 0.5 m 60°
N8 1 m 60°

We select 50 websites according to Alexa Top Sites, which
are listed in Appendix E. For each website, we measure the
EM signals from different directions (which are 315°, 0°, 30°,
and 60°) at different distances (which are 0.5 m, 1 m, 3 m, and
6 m), as listed in Table IV. At each spot, we measure the EM
emanations for 8 seconds when its webpage is opened, and we
repeat this process for 50 times. (To facilitate data collection,
we use a script that repeatedly lets the current tab return to the
blank page, waits for 5 seconds, and opens the target webpage
as well as notes the time for latter trace alignment.) For each
measured signal, we use the techniques described in Section V
to generate a time series. Given the 25 MHz sampling rate,
we use L = M = 250, 000, namely, each subsequence has
250,000 samples and a 250,000-point DFT is used, which
means that the DFT bin resolution is 100 Hz and each derived
point S[k] represents 10 ms.

1) Nearby Scenario: We start with a nearby scenario, where
only the EM signals measured at N1, N2, N3, and N4 are used
to train a classification model, and the EM signals measured
at N5, N6, N7, and N8 are used for testing. Given the fact
that the EM signals have been transformed into time series,
we adopt the ResNet model from [59], whose architecture is
duplicated in Appendix D. (As for each website there are 50
EM signals measured at each spot, there are 200 time series
for training and 200 time series for testing with respect to
each website.) The evaluation results in terms of accuracy are
shown in Table V, and the confusion matrices are shown in
Appendix F.

TABLE V: Fingerprinting accuracy in the nearby scenario
RX 580 RX 5600 RX 5700 GTX 1080 GTX 1650 RTX 30601 RTX 30602

N5 85.9% 83.3% 74.3% 81.9% 84.0% 80.7% 56.7%
N6 84.0% 86.0% 79.5% 88.2% 85.4% 61.3% 62.7%
N7 85.3% 82.6% 74.0% 73.3% 83.6% 72.4% 67.6%
N8 86.0% 83.2% 70.4% 72.4% 78.6% 70.0% 68.5%

Avg. 85.3% 83.8% 74.6% 79.0% 82.9% 71.1% 63.9%
Std. 0.8% 1.3% 3.2% 6.5% 2.6% 6.9% 4.7%

Note that, in reality, an attacker can profile the EM signals
from any direction at any distance. Therefore, this scenario
is biased against attackers, and the evaluation underestimates
the achievable accuracy. Even so, from the results, we can see
that the averaged classification accuracy is above 63% in all
cases, and it reaches 85.3% in the case of RX 580. Given a
test example, if we randomly guess which of the 50 websites it
corresponds to, the accuracy will be only 2% (i.e., 1/50). Thus,
the results signify that an abundant amount of information can
be leaked through this new EM side channel. (The better and

8Since quadrature sampling is used, it provides 25 MHz bandwidth.

also more pragmatic results after relaxing the limitation on the
capability of attackers can be found in Appendix G.)

An interesting case is to compare the results corresponding
to using the same GPU but under different OSes. The last
two columns of Table V show such a case, where NVIDIA
RTX 3060 is evaluated under Windows (the last column) and
Linux (the second last column). We can observe that, except
for the anomalous spot N5, the performance for any other spot
appears to be very similar, although it is slightly better under
Linux. We also use the Linux-related model to classify the data
captured under Windows and vice versa, but interestingly the
accuracy is just slightly better than random guessing (4.3%
and 5.6% respectively). This means that factors like drivers
and Chrome engines for different OSes can strongly affect the
GPU DVFS behavior when rendering webpages. Notice that,
an attacker can simply perform profiling against both OSes and
combine the training data, and thus we train a single model in
such a manner to test the performance. The resultant accuracy
becomes 64.1%, which is very similar to the one in the last
column (i.e., 63.9%). Therefore, this fingerprinting can work
no matter which OS is used on the target.

AMD RX 5600 and RX 5700 do differ but both of them are
based on AMD RDNA 1.0 architecture. We attempt to use the
models trained for them to cross fingerprint each other. The
accuracy of using the model trained for RX 5600 to fingerprint
the signals of RX 5700 is 63.3%, and the accuracy of using
the model trained for RX 5700 to fingerprint the signals of
RX 5600 is 50.6%. Even though they are made by different
vendors and use different GPU chipsets, we can still obtain
reasonable website fingerprinting results. This implies that an
attacker can use the model trained with respect to his/her own
GPU to fingerprint the signals of another similar GPU (of
course, more accurately if two GPU chipsets also match).

2) Faraway Scenario: Next, we perform evaluations in a
faraway scenario, where the EM signals measured at F1, F2,
F3, and F4 are used to train a classification model, and the EM
signals measured at F5 and F6 are used for testing. In addition,
we test signals measured at N6 using this model. We evaluate
two GPUs that are AMD RX 580 and NVIDIA GTX 1650.
We place GTX 1650 in the modern-looking computer case,
while we place RX 580 in the all-metal computer case (see
Appendix A for details about these two computer cases). The
evaluation results are shown under “Faraway Scenario 1” in
Table VI, and the confusion matrices are shown in Appendix F.

TABLE VI: Fingerprinting accuracy in the faraway scenarios
Faraway Scenario 1 Faraway Scenario 2

RX 580 GTX 1650 RX 580 GTX 1650
F5 80.1% 95.4% 83.6% 95.6%
F6 78.3% 93.2% 80.4% 94.1%
N6 70.9% 83.9% 87.0% 94.8%

Similar to the previous nearby scenario, the evaluation also
underestimate the achievable accuracy. Nevertheless, we can
observe that the accuracy is very high, and in terms of NVIDIA
GTX 1650, the resulting performance at far distances is even
much better than that at near distances (e.g., it reaches 95.4%
at 3 m and 93.2% at 6 m in comparison to 85.4% at 1 m). We



discuss a possible reason for this phenomenon in Appendix H.
Moreover, in this scenario, training examples are neither from
N6’s direction nor around its distance, but the result w.r.t. N6
is comparable to that in Table V for GTX 1650 and fairly
decent for RX 580. The results indicate that, as long as the
EM signals of interest can be picked up, the differences in
direction and distance are generally tolerable.

In the second faraway scenario, we include the EM signals
measured at N2 and N4 for training as well, and still test
the EM signals measured at F5, F6, and N6. The evaluation
results are shown under “Faraway Scenario 2” in Table VI. We
can observe that after expanding training examples with the
ones measured at nearby spots N2 and N4, the accuracy w.r.t.
faraway spots F5 or F6 does not change much, but it becomes
much higher w.r.t. N6. The results indicate that, between the
two profiling factors distance and direction, distance affects
performance more. Thus, if resources are limited, an attacker
should choose distance over direction during profiling.

VII. CASE STUDY 2: KEYSTROKE TIMING INFERENCE

In this section, we present the second case study we have
conducted on the exploitation of the DVFS-induced EM side-
channel vulnerability, which is to detect the keystroke events
and learn the time between successive keystrokes, namely, a
keystroke timing inference attack. Even though such an attack
cannot directly recover the specific keys pressed by a user,
it is still treated as a type of keylogging [39], because the
knowledge about the keystroke timing can be exploited to infer
the typed passphrases or other words [54], [62]. Thus, this
attack poses a greater hazard to security and privacy.

When combined with the website fingerprinting attack stud-
ied in the last section, it can even cause more serious violation
of user privacy. For instance, when it is detected that a user has
opened the login page of some website, the attacker can try to
recognize the length of typed username and password through
the number of identified keystrokes and the attacker can further
try to infer the details of such items via the timing information
using some well-studied statistical techniques [39], [54], [62].

A. Keystroke Detection

If we can detect the keystroke events and mark them pre-
cisely on the time axis, it will be a straightforward task to learn
the time between successive keystrokes. Hence, we investigate
if keystrokes are detectable from the EM emanations of the
GPU memory clock, especially during the time when a user
is typing on a webpage.

In essence, typing in a text box on a webpage makes the
affected tiles of the corresponding layer re-rasterized and the
final screen image re-composited. As previously mentioned, a
browser often delegates the computation generated by these
operations to GPU for acceleration. According to our earlier
observations, the GPU performance level will be consequently
changed by DVFS, and such level switches can be captured
by monitoring the EM emanations of the GPU memory
clock. Therefore, we expect that the keystroke events can be

detected by exploiting the DVFS-induced EM side-channel
vulnerability in modern GPUs.

To verify this hypothesis, we carry out several experiments.
Firstly, we use keyboard activity generation tools to create
a sequence of fake keystrokes regarding certain patterns and
check if the appearance of the EM signals of the GPU memory
clock match these patterns. Figure 10 shows an example of this
experiment performed on NVIDIA GTX 1080, where we use
a script to repeatedly generate a sequence of ‘a’, ‘b’, and ‘c’
in the search box of Google. After each ‘a’, there is a 200 ms
pause; after each ‘b’, there is a 350 ms pause; and, after each
‘c’, there is a 500 ms pause. The time series in Figure 10 is
derived using the techniques described in Section V. From this
figure, we can easily see that the appearance of peaks match
the ‘a’, ‘b’, ‘c’ keystroke timing pattern.
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Fig. 10: Keystrokes generated using xdotool with a predefined
pattern on Google (performed w.r.t. NVIDIA GTX 1080)

Next, we ask three people to quickly type “username”
and “password” in the corresponding boxes on the Facebook
login page. The keyboard is Dell L30U. Figure 11 illustrates
the processed EM signals of interest in terms of NVIDIA RTX
3060 when the fastest typist among the participants is typing.
From the results, we confirm that the keystroke events can be
correctly detected and the inter-keystroke timing information
can be precisely derived. Notice that, even though we are able
to determine the time between the keystrokes by exploiting the
EM emanations of interest, we have not found any correlation
between the signal and the typed characters.
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Fig. 11: Keystrokes typed by a user on Facebook (performed
w.r.t. NVIDIA RTX 3060)

We also need to mention that an attacker could have a hard
time to correctly detect keystroke events if a user were typing
on a webpage that is crowded with animations. Nevertheless,
this limitation does not restrict an attacker too much in reality
from learning the inter-keystroke timings related to typing very
valuable information like usernames and passwords, because it
is auspicious for the attacker that the login or sign-up pages of
many popular or important websites are deliberately designed
to be plain and simple (e.g., Google, Amazon, Twitter, PayPal,
Bank of America, and so forth).

B. Evaluation

In this evaluation, we mainly explore how close in time two
successive keystrokes can be such that they are still detectable



via exploiting the discovered DVFS-induced EM side-channel
vulnerability. To facilitate the evaluation, we use the keyboard
activity generation tools to create fake keystrokes, since they
are certainly much more precise in time than manual inputs.
As mentioned above, we focus on deriving the time between
successive keystrokes when typing on webpages in a browser.
Thus, the evaluation is primarily conducted in such a scenario.
Like in Section VI, we exclusively use Chrome as the browser.
We choose Google homepage and PayPal login page to be the
representative venues for the evaluation.

In terms of the setup of signal measurement (e.g., SDR
and antenna), it is the same as that described in Appendix A.
The captured EM signals are still processed using GNU Radio.
Currently, we do not use any automatic approach to identifying
the keystroke events in the processed data but only perform a
manual analysis.

TABLE VII: How close in time two keystrokes could be such
that they are still distinguishable from each other

RX 580 RX 5600 RX 5700 GTX 1080 GTX 1650 RTX 3060
Interval 150 ms N/A N/A 50 ms 70 ms 30 ms

We create sequences of keystrokes with the inter-keystroke
time interval being 10 ms, 20 ms, 30 ms, · · · , respectively.
We test each sequence on each GPU target machine listed in
Table I to check if all the keystrokes in the sequence can be
detected via the peak appearance and disappearance patterns in
the derived time series. Table VII shows the evaluation results.

From the results, we can see that NVIDIA RTX 3060 has the
highest time resolution, where keystrokes at 30 ms intervals
can be clearly recognized. (When it is lower than 30 ms, e.g.,
20 ms, more than 90% keystrokes can also be recognized.) In
terms of other NVIDIA GPUs, GTX 1080 and GTX 1650, a
high resolution can also be achieved.9

Compared to NVIDIA GPUs, the timing resolution in terms
of AMD RX 580 is much coarser, that is almost 150 ms.
The reason for this discrepancy is that when RX 580 is at
the second lowest performance level, it appears to stay there
longer than those tested NVIDIA GPUs. Hence, if two or more
keystrokes occur very closely in time, they can be treated as
one keystroke event. (Nevertheless, a recent study on human
typing behavior and performance has revealed that 250 ms
inter-keystroke time interval is already very fast for many
normal people [9].) The interesting cases are AMD RX 5600
and RX 5700, on which we cannot mount the discussed attack.
Even though their performance level changes correspondingly
when a webpage is being rendered (as shown in Section VI),
we find that this switching behavior seldom happens when typ-
ing on webpages (namely, the GPU workloads due to normal
keystrokes do not always cause the DVFS of high-end AMD
GPUs to bump up their performance level). Therefore, we may
not exploit the DVFS-induced EM side-channel vulnerability
for this attack when these AMD GPUs are used.

9Additionally, we temporarily borrow two other NVIDIA GPUs, RTX 2060
Super and RTX 2080, from another group, and find that they behave the same
as RTX 3060 and can reach 30 ms.

VIII. INEFFECTIVENESS OF DISABLING GPU DVFS
To mitigate the aforementioned exploitation possibilities, a

straightforward approach is to disable GPU DVFS by setting
the GPU to run at a specific performance level. However,
such a countermeasure has two major problems. The first
one is that this countermeasure hurts either performance or
energy efficiency. If a relatively low performance level is
selected, it will contradict with the purpose of using the GPU
for acceleration; yet, if a high performance level is selected,
it will be highly energy-inefficient. The second and much
severer problem is that, when NVIDIA GPUs are used, this
countermeasure will unfortunately introduce another highly
exploitable EM side-channel vulnerability.

A. AM-Modulated EM Emanations

The reason for such ineffectiveness is that we have discov-
ered a new type of exploitable EM emanations appearing when
the performance level of an NVIDIA GPU is fixed. Given an
NVIDIA GPU, a user may use tools included in the official
driver to set its performance level to be maximum. (Unlike
AMD GPUs whose driver allows us to fix the performance
level at any defined one, the performance level of NVIDIA
GPUs can only be fixed at the highest.) We find that when the
performance level is fixed as such, there appears strong EM
emanations that are inadvertently AM-modulated by the GPU
memory accesses. In other words, the strength of these EM
emanations varies when the amount of data reads and writes
changes.

Interestingly, the EM emanations are around the frequency
that is one eighth the data rate in the cases of all NVIDIA
GPUs we have tested (i.e., GTX 1080, GTX 1650, and RTX
3060). Although we do not know the exact cause of such
EM signals at the moment, an educated guess is that they are
created by some clock driving certain components in the GPU
memory system. We leave the search for this clock to our
future work.

Since the emerging EM emanations will be AM-modulated
by the GPU memory accesses, even though the DVFS-induced
EM side-channel vulnerability were removed by using a fixed
GPU memory clock frequency, information about the patterns
of GPU memory traffic would be encoded into these new EM
emanations, which can be exploited to effectively identify the
high-level activities. Essentially, such EM emanations act as
a modulated carrier signal that bears the modulating activity
information and propagates to large distances.

As an example, Figure 12 shows the above-mentioned
carrier signal of interest that emerges when we set the per-
formance level of NVIDIA GTX 1650 to its maximum. Given
the 8 Gbps data rate of GTX 1650 at its maximum level, the
EM carrier signal on which we focus will be at 1000 MHz.
Yet, from Figure 12 (A), which illustrates the carrier signal of
interest in the frequency-domain, we can observe that it has a
number of spectral components in the frequency range from
996 MHz to 1000 MHz. Recall the discussion in Section IV-A
that SSC is used to vary the frequency of a clock over a range
for meeting EMC regulations. These components spread over
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Fig. 12: Carrier signal emitted by NVIDIA GTX 1650 that
can be AM-modulated by GPU memory accesses

the 4 MHz range in Figure 12 (A) are caused by SSC, which
indicates that the carrier signal is due to a clock. Figure 12
(B) shows the signal in the time-domain and its amplitude will
change over time when AM-modulated.
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Fig. 13: The amplitude of carrier signal is modulated when
opening three websites in Chrome

To exemplify that the EM signal shown in Figure 12 can be
AM-modulated and exploitable, we examine the signal when
browsing different websites using Chrome. Like the example
demonstrated in Section VI-B, we use the three most popular
websites, Google, Amazon, and Youtube. As the performance
level is fixed this time, we cannot exploit its switching patterns
to discern these websites. However, Figure 13 shows that the
EM signal arising after the DVFS-induced EM side-channel
vulnerability is mitigated can be exploited to infer the website
identities, as its amplitude is modulated by the GPU memory
accesses during webpage rendering, which should be different
in general if different pages are being rendered. Comparing
Figure 8 and Figure 13 with respect to the time axis, we can
note resemblances. For instance, the 1.67 Hz blinking cursor
behavior on Google search page is obvious in both cases. The
AM-modulated signal of interest certainly carries information
fine-grained enough for being exploited.

Notice that, when GPU DVFS is disabled, we have found
this EM side-channel vulnerability only in NVIDIA GPUs
but not in AMD GPUs. Nevertheless, it does not mean that

disabling DVFS is a completely effective countermeasure in
terms of AMD GPUs. There may be some other undiscovered
EM vulnerabilities emerging when DVFS is disabled on AMD
GPUs. We will discuss some possible countermeasures in the
next section.

B. Evaluation and Discussion

To show the exploitability of such AM-modulated EM ema-
nations, we evaluate the performance of website fingerprinting
attack on NVIDIA RTX 3060 with Windows being used as the
OS. The evaluation setting is exactly the same as the one used
in Table V, namely, the signals measured at N1, N2, N3, and
N4 are used to train a classification model and the signals
measured at N5, N6, N7, and N8 are used for testing. At each
spot, it is still 50 signals being captured for each website.

The signal measurement setup is the same as that in
Section VI-C with one exception – we tune the SDR to center
at 1875 MHz, as it is the frequency that is one eighth the
corresponding data rate when we set the performance level of
RTX 3060 to be the highest. We directly use the measured sig-
nal in the time-domain, as shown in Figure 13. Since it is also
time series data, we still use the same ResNet classification
model. The evaluation results are shown in Figure 14.
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Fig. 14: Website fingerprinting accuracy comparison of ex-
ploiting DVFS-induced and AM-modulated EM emanations
from NVIDIA RTX 3060 with Windows being the OS

From the results, we can find that the accuracy is as
high as 89.1%, which is much better than that exploiting
the DVFS-induced EM emanations (i.e., 63.9%). Such good
performance indicates that the AM-modulated EM emanations
can be exploited to effectively mount website fingerprinting
attacks. Even compared with the last column in Table IX in
Appendix G where data collected at the other seven spots
is used for training, we can observe that the accuracy here
is much higher. If considering only the fact that disabling
GPU DVFS is actually used as a countermeasure, it would
be unexpected to find that such a mitigation method helps
rather than thwarts attacks.

We have also verified that we are able to perform keystroke
timing inference by exploiting such AM-modulated EM sig-
nals. In this case, two keystrokes separated by 20 ms are still
well distinguishable no matter which NVIDIA GPU is used.

Our conjecture about the considerably increased attack
performance when leveraging the AM-modulated EM em-
anations is that the granularity of information carried in
such EM signals is much finer than the DVFS-induced ones.
Although GPU DVFS is rapid enough to reveal changes in



GPU workloads, it cannot enable us to pry more detailed
activities inside each workload. In the specific case of website
fingerprinting attack, if some finer-grained information can
be acquired, it may help distinguish webpages that generate
similar sequences of GPU workloads during their rendering.
By contrast, the emanations whose strength is AM-modulated
by GPU memory accesses inevitably contain information about
the modulating memory activities of each workload. Thus,
given the webpages which are often misclassified as each
other when the DVFS-induced EM side-channel vulnerability
is exploited, they become more discernible from each other
when using the AM-modulated EM emanations.

Notice that, the EM side-channel vulnerability presented in
this section and the DVFS-induced one cannot be exploited at
the same time. We find that the AM-modulated vulnerability
emerges only when the performance level is fixed. Therefore,
although the AM-modulated EM side-channel vulnerability
can be leveraged to achieve more effective attacks, it is the
DVFS-induced one that will be exploited in many realistic
situations, because, most of the time, a user will not change the
settings on GPU DVFS which is active by default. However,
as we have seen in this section, if the GPU DVFS is turned
off, the other EM vulnerability becomes available for being
exploited.

IX. COUNTERMEASURES

As described in Section VIII, the straightforward mitigation
approach that disables GPU DVFS by fixing the performance
level fails to effectively prevent information leakage from
many GPUs. In this section, we propose several other coun-
termeasures that we believe can potentially mitigate the EM
side-channel vulnerabilities of GPU.

The first mitigation direction is to try to significantly lower
the SNR of the exploitable EM emanations that an attacker
can measure. To achieve this, we may have different options
(e.g., using an RF device to generate some EM noise over
the targeted frequency range), but a plausible and attainable
method is to shield the computer for reducing the intensity
of the emitted EM signals. For example, we may be tempted
to tape some shielding Faraday fabric on the computer case
sides. We have performed such experiments and found that, if
we just naively rely on the patterns of stripe appearance on
the spectrograms for exploitation, this can indeed make far-off
attacks much harder or even impossible. However, if we apply
the techniques proposed in Section V first, we can still acquire
the target signal’s appearance/disappearance patterns even
when the SNR becomes very low, which defeats the purpose of
having EM shielding in such a simple way. Therefore, more
carefully engineered EM shielding computer cases are needed.
Moreover, hardware manufacturers should devote more efforts
to minimizing EM emissions in their future product designs,
as replied by NVIDIA to us.

The second mitigation direction is to make the granularity
of the EM side-channel information much coarser. For this
purpose, we may try to reduce the sensitivity of GPU DVFS
to workload changes. In such a case, the performance level

may not be switched during activities like webpage rendering,
and thus the leaked information will be coarse-grained so that
very little sensitive information can be inferred. Although this
method does not try to eliminate side-channel information, it
can reduce the entropy of that side-channel and thus reduce the
overall exploitability. Since this will hurt energy efficiency, a
problem is how to find a good trade-off between security and
power consumption.

In addition to reducing the SNR of the EM signals and
increasing the granularity of the side-channel information, a
third direction is through obfuscation. For instance, when a
sensitive activity is using GPU, we may deliberately generate
some random GPU workloads to disrupt its original GPU use
pattern such that the predictability is reduced. With respect
to the website fingerprinting attacks studied in this paper,
we may implement a thread in the browser to randomly use
GPU for some dummy computation during webpage rendering
via certain interfaces like WebGL. In terms of Chrome in
particular, we may simply create an extension to send random
requests to the GPU process which is the specific process in
Chrome for managing interactions with GPU.

X. RELATED WORK

EM emanations generated by computing devices have been
extensively exploited to carry out various side-channel attacks,
e.g., stealing cryptographic keys [2], [12]–[14] and inferring
private information [10], [25], [32]. (EM emanations have also
been exploited to construct covert communication channels for
data exfiltration [16], [61].) As mentioned in [4], many of the
EM side-channel attacks are only short-range given the fact
that most exploitable EM emanations are weak near-field ones.
To perform long-range attacks, Camurati et al. have discovered
that wireless communication signals may be exploited, as such
RF signals can be inadvertently AM-modulated (in a cascaded
manner) by the EM emanations from the digital circuit of the
mixed-signal chip due to substrate noise coupling [4]. (Later,
Wang et al. improved Camurati’s work by using deep learning-
based analysis techniques [58].) Moreover, Callan et al. have
observed that exploitable information may be carried by some
strong EM signals (generated by certain voltage regulators or
clocks) in the form of AM-modulation [3], which has been
leveraged in attacks and defenses [43], [50], [61], [64].

Similar to our work, Sehatbakhsh et al. have also exploited
EM emanations involved with power management for attacks
very recently [51]. While there are similarities, fundamental
differences exist. First, our work leverages the effect of DVFS
on GPU clocks, whereas their work uses the effect of demand-
based switching on CPU voltage regulators. Second, our work
also studies how to increase the SNR of the EM emanations
of interest to make them still exploitable even in the presence
of EM shielding and strong noise contamination. Third, aside
from the overlap in terms of inferring keystroke timing, the two
works demonstrate different attacks, where the work presented
in [51] builds covert channels for data exfiltration and our work
showcases website fingerprinting. Finally, our work illustrates



that disabling DVFS as a countermeasure may not be fully
effective.

Given the rising popularity of modern GPUs, research on
their security implications has begun drawing attentions in
recent years. Several studies exploit possible residues in GPU
memory that may not be properly cleared after use. Pietro et
al. have shown that the lack of memory-zeroizing operations
can be exploited to attack CUDA AES implementations [47],
and the memory residual leakage vulnerabilities in virtualized
and cloud computing environments have been investigated by
Maurice et al. [33]. Furthermore, Zhou et al. have studied
how to extract raw images from GPU memory residues [65].
In [27], Lee et al. have successfully inferred the web browsing
history by examining GPU memory dumps.

Other than relying on GPU memory residues, many attacks
exploit possible logical or physical side-channel information
of GPU to breach confidentiality. Jiang et al. have studied the
timing differences due to contentions on shared GPU caches
or memory banks and leveraged such timing side-channels to
break AES implementations on GPU [20], [21]. Luo et al.
have demonstrated that CUDA RSA implementations are also
susceptible to timing side-channel analysis [29]. Aside from
logical side-channel information, Luo et al. have also used
GPU power consumption traces for cryptanalysis of CUDA
AES [30], while Gao et al. have used near-field localized EM
emanations from GPU for the same purpose [11]. In addition
to subverting GPU-accelerated cryptosystems, Naghibijouy-
bari et al. have studied GPU side-channel attacks in a more
general context, where they used performance counters or
resource tracking APIs to measure shared GPU resource con-
tentions and exploited such information to fingerprint websites,
infer user activities, and reverse engineer neural networks [41].

GPUs can also be a new venue of which malware takes
advantage to increase its stealthiness [56]. In [26], Ladakis
et al. have implemented a piece of GPU-based malware that
directly monitors the keyboard buffer from GPU via DMA to
log keystrokes, and in [66], Zhu et al. have conducted a more
comprehensive study on such a topic. In [40], Naghibijouybari
et al. have showed that malware may exploit contentions on
shared GPU resources to construct covert channels for data
exfiltration. In [7], Davidov and Oldenburg have also exploited
GPU’s EM emanations, but they only showed a malware-
enabled covert channel on an AMD GPU.

Website fingerprinting and/or keystroke timing attacks have
been investigated to a great extent in the past. Other than
network traffic analysis, an attacker may exploit certain logical
side-channel information, such as cache timings [45], [53],
memory footprints [19], storage usage statistics [22], shared
event loops [57], and interrupt timings [28], to achieve such
attacks. Like our work, physical side-channel information has
also been studied for this malicious purpose [6], [15], [63]. In
particular, an EM-based website fingerprinting attack is shown
feasible in a mobile setting by Matyunin et al. [32], in contrast
to which, our work focuses on scenarios where discrete GPUs
are used.

XI. CONCLUSION

In this paper, we have presented our newly discovered EM
side-channel vulnerability that exists in many modern GPUs
and conducted two case studies, website fingerprinting and
keystroke timing attacks, to demonstrate that this new EM
vulnerability is highly exploitable. Even though the root cause
of this vulnerability is identified as the commonly used DVFS
feature in GPU, we have shown that simply disabling DVFS
by setting GPU to a specific performance level may not be
an effective countermeasure since another AM-modulated EM
vulnerability emerges. We have also discussed some potential
mitigation approaches.

As research on information leakage vulnerabilities of GPU
has just started lately, we believe that the currently disclosed
ones and their exploitation represent only the tip of the iceberg,
and many other exploitable ones lurk in the darkness. The
study carried out in this paper argues for more rigid evaluation
on the security of GPU from different perspectives.
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APPENDIX A

In this paper, we carried out all the experiments using an
SDR device, USRP B210, and an ultra-wideband directional
antenna, RFSPACE UWB-3. As shown in Figure 15, the
antenna is directly connected to the SDR device via a coaxial
cable without any other amplifier/filter front-end modules in-
between. The bandwidth we need here is 25 MHz, and the
USRP B210 can provide 56 MHz of instantaneous bandwidth
in the frequency range of 70 MHz to 6 GHz, which is more
than sufficient for our needs. The GNU Radio framework is
used to capture and process the signal of interest.

The modern-looking computer case with a translucent side
panel (which is acrylic) is AeroCool Cylon RGB Mid Tower.
The monitor is HP VH240A. The motherboard installed in this
case is ASUS PRIME Z270-P. The CPU used in this system

Fig. 15: Signal measurement equipment: USRP B210 and
RFSPACE UWB-3

is Intel i5-6500T. The power supply unit (PSU) installed in
this case is Apevia ATX-JP1000 Jupiter 1000W.

The all-metal computer case is Thermaltake Versa H22 Mid
Tower. The monitor is HP VH240A. The motherboard installed
in the case is ASRock Z270 Killer SLI. The CPU used in
this system is Intel i3-6100. The PSU installed in this case is
Thermaltake Smart 700W.

When we performed the experiments reported in Sec-
tion IV-C, we used AMD GPU driver for Linux (AMDGPU
20.20) to set the performance level to the second lowest one.
However, NVIDIA GPU driver does not allow us to fix the
GPU to a specific performance level except for the highest
one. To ensure the appearance of the signals of interest, we
played YouTube videos to make sure that the performance
level bumps up to the second lowest one frequently.

APPENDIX B

Here we use an example to demonstrate the effectiveness of
using the techniques described in Section V to overcome the
relatively low SNR issue. We use AMD RX 5700 and Linux
OS in this example.
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Fig. 16: Spectrogram corresponding to a scenario where the
periodic performance level change is invisible

We have RX 5700 in the all-metal computer case, and place
it far away from the antenna (about 6 meters). We make a
script which uses the AMD GPU driver to periodically switch
the performance level between the lowest and the second
lowest. Figure 16 shows the corresponding spectrogram. On
the spectrogram, we cannot visibly find any patterns of stripe
appearance. If we simply use such spectrograms for attacks
like website fingerprinting, it is very unlikely that the attacks
can be successfully mounted.

By contrast, Figure 17 shows the time series derived using
the techniques described in Section V. From the figure, we
can clearly see the designed periodic peak appearance pattern.
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Fig. 17: Derived time series in which peaks appear periodically
and match the desired pattern

APPENDIX C

Given a target GPU, there may be some other GPUs close to
it, and they all have the same second lowest WCK frequency.
In such a scenario, an attacker can first try to avoid picking
up the disturbing signals emitted from the nearby GPUs by
an appropriate placement of the directional antenna. We have
experimentally verified this against the following setup – two
RX 580 machines are placed close to each other (less than 1
meter apart), where one of them is the target that has a cursor
blinking in the Google search box and the other one plays a
Youtube video; and the directional antenna is placed 3 meters
away from both machines. We confirm that we can find several
appropriate placements to pick up only the signals of interest
of the target, and the corresponding spectrogram is shown in
Figure 18 (A).

(A) Feasibility of avoiding picking up disturbing signals

1990 1995 2000 2005 2010

Frequency (MHz)

0

1

2

3

T
im

e
 (

s
)

(B) Feasibility of separating signals of multiple GPUs
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Fig. 18: Examples of dealing with disturbing signals generated
by nearby GPUs

Nevertheless, the attacker may be restricted from arbitrarily
positioning the antenna, and therefore the signals emitted from
the nearby GPUs may be picked up clearly that can strongly
contaminate the spectrum. Continuing with the example above,
Figure 18 (B) shows the spectrogram where we have signals of
both RX 580 GPUs picked up. Compared to Figure 18 (A), we
can see that the desired pattern becomes hardly recognizable.
Interestingly, we find that the time series derivation technique
described in Section V-A can help us precisely separate signals
generated by multiple identical or similar GPUs. The reason is
that, due to oscillator imperfection, the fc of a GPU is nearly
unique and often differs from the fc of another one by several
kHz, namely multiple kth DFT bins for the fc can be found and
subsequently multiple independent S[k] traces will be derived.

In our example, the two fc’s are separated by 12.6 kHz (i.e.,
126 bins given 100 Hz resolution) and the signals can be fully
separated as shown by the bottom part of Figure 18 (B).

APPENDIX D

For classifying time series data in our website fingerprinting
attack, we directly use the residual network (ResNet) model
proposed in [59]. Its architecture is duplicated here in Fig-
ure 19. The details about the model can be found in [59] and its
code repository (https://github.com/cauchyturing/UCR Time
Series Classification Deep Learning Baseline).
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Fig. 19: The neural network model used for our website
fingerprinting attack (duplicated from [59])

APPENDIX E

Table VIII lists the websites that are used in our evaluations
on website fingerprinting.

TABLE VIII: List of fingerprinted websites
9gag.com abs-cbn.com adobe.com
amazon.com amazonaws.com aol.com
apple.com archive.org ask.com
battle.net bing.com blogger.com
booking.com businessinsider.com cnn.com
deviantart.com dictionary.com discord.com
duckduckgo.com ebay.com espncricinfo.com
exoclick.com facebook.com feedly.com
foxnews.com gamepedia.com github.com
go.com goodreads.com google.com
imdb.com linkedin.com live.com
microsoft.com msn.com netflix.com
office.com paypal.com pinterest.com
reddit.com roblox.com stackoverflow.com
twitch.tv twitter.com whatsapp.com
wikipedia.org yahoo.com youtube.com
zillow.com zoom.us

APPENDIX F

Figure 20 shows the classification results in the form of
heat-map-represented confusion matrices corresponding to the
nearby scenario evaluation performed in Section VI-C, and
Figure 21 shows the confusion matrices corresponding to the
evaluation in the first faraway scenario.

APPENDIX G

We relax the limitations in the nearby scenario setting by
allowing the training data set to include examples collected
at all the other seven spots when testing each of the last four
spots (i.e., spots N5, N6, N7, and N8). Table IX shows the
evaluation results. Compared with the results in Table V, we
can observe that the accuracy is increased by more than 10% in

https://github.com/cauchyturing/UCR_Time_Series_Classification_Deep_Learning_Baseline
https://github.com/cauchyturing/UCR_Time_Series_Classification_Deep_Learning_Baseline
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(C) AMD RX 5700
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(D) NVIDIA GTX 1080
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(E) NVIDIA GTX 1650
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(F) NVIDIA RTX 30601
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(G) NVIDIA RTX 30602
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Fig. 20: Confusion matrices corresponding to the evaluation
reported in Table V

many cases (e.g., in terms of NVIDIA GTX 1080, the accuracy
is increased by 11.1%, and in terms of NVIDIA RTX 3060,
the accuracy is increased by 11.6% in the Linux case and
13.3% in the Windows case). Similarly, Table X shows the
evaluation results when we relax the limitations in the first
faraway scenario. Since an attacker can freely choose different
spots for profiling at his/her own place, the accuracies reported
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(B) NVIDIA GTX 1650
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Fig. 21: Confusion matrices corresponding to the evaluation
reported in “Faraway Scenario 1” of Table VI

here actually represent more pragmatic results.

TABLE IX: Fingerprinting accuracy in the relaxed nearby
scenario (training examples are collected at all the other spots)

RX 580 RX 5600 RX 5700 GTX 1080 GTX 1650 RTX 30601 RTX 30602
Avg. 93.0% 86.9% 80.6% 90.1% 89.9% 82.7% 77.2%
Std. 1.4% 0.7% 1.6% 3.1% 1.9% 3.9% 4.1%

TABLE X: Fingerprinting accuracy in the relaxed faraway
scenario (training examples are collected at all the other spots)

RX 580 GTX 1650
Avg. 83.4% 95.7%
Std. 2.7% 1.1%

APPENDIX H

A counterintuitive phenomenon in the website fingerprinting
evaluation is that the accuracy for the NVIDIA GTX 1650 is
higher at far distances than it is at near distances. One possible
reason for this phenomenon is that some other EM signal in
the frequency range of our interest is generated from a certain
hardware component on the MSI GTX 1650 GPU card, which
does not propagate far but is still relatively strong at 1 m. In
other words, this additional signal is more disturbing to the
EM signal of interest at 1 m. To simply verify this, we show
two normalized S[k] traces in Figure 22 derived from signals
captured at 1 m and 3 m, corresponding to a 2Hz performance
level switching. From the figure, we can see that the S[k] trace
at 1 m indeed has many relatively high spikes in between two
expected spikes. However, due to the high complexity of the
hardware stack of NVIDIA GPUs, we cannot easily pinpoint
the exact component that contributes to this.
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Fig. 22: Normalized S[k] traces derived from the EM signals
of interest measured at 1 m and 3 m against MSI GTX 1650
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