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Abstract—With the rapid scaling of data centers,
understanding their power characteristics and optimizing
data center energy consumption is a critical task. Typically,
data centers are provisioned for peak load even when they
are mostly operating at low utilization levels. This results in
wasteful energy consumption requiring smart energy saving
strategies. At the same time, latency critical application
workloads have stringent quality of service (QoS) constraints
that need to be satisfied. Optimizing data center energy with
QoS constraints is challenging since different workloads can
have variabilities in job sizes and distinct system utilization
levels. Also, server configuration (e.g., the number of cores
per server) can be different across data centers. Therefore, a
single configuration for energy management that works well
across these various scenarios, is not practical. In this paper,
we propose TS-BatPro, a novel framework that judiciously
integrates spatial and temporal job batching to save energy for
multicore data center servers while meeting the QoS constraints
for application workloads. TS-BatPro performs effective global
job batching and scheduling by modeling job performance and
power characteristics of multicore servers without any hardware
modifications. TS-BatPro works on commodity server platforms
and comprises two components: 1) a temporal batching engine
that batches incoming jobs such that the servers can continue to
reside in low-power states and 2) a spatial batching engine that
prioritizes scheduling job batches to a small subset of servers.
We develop a prototype of TS-BatPro on physical testbed with
a cluster of servers and evaluate TS-BatPro on a variety of
workloads. Our results show that TS-BatPro is able to achieve
significant amount of energy savings under various job response
time constraints and traffic patterns.

Index Terms—Energy efficiency, data centers, temporal–spatial
batching, QoS constraints, low-power states, package C state,
multi-core processors.

I. INTRODUCTION

DEMANDS for personalized and contextual retrieval of
large volumes of data from the users and the associated
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computations have strongly driven the growth of data centers.
Today’s computer systems are increasingly power hungry. Data
centers now account for about 2% of the U.S. domestic energy
consumption [1], [2]. Most server farms are provisioned for
peak demand, and configured to operate at capacities much
higher than necessary. Studies by Fan et al. [3] have shown that
the servers in data center environments are typically utilized at
only 30% of their potential while drawing almost 60% of the
power. The lack of server energy proportionality has signifi-
cantly undermined data center energy efficiency and incurred
considerable wasteful energy spent every year.

Two major issues contribute to the disproportionality
between server utilization and energy consumption: ineffective
use of idle power modes in servers that waste a considerable
amount of energy by keeping excessive number of servers in
standby mode (consumes 30% to 60% of server peak power)
when they are idle; over-provisioning of servers which keeps
CPUs in high power-consuming active state during the periods
they are not processing any jobs.

Prior works that address data center energy issues can be
broadly classified into three categories: (i) cluster-level power
management techniques that dynamically size data centers
by dispatching workloads to a subset of servers and put the
rest of the servers in system low power states or just turn
them off [4]–[7]; (ii) server dynamic power management that
leverage Dynamic Voltage and Frequency Scaling (DVFS) to
achieve trade-offs between data center energy and application
performance [8]–[11]; (iii) recent works on server idle power
management that take advantage of processor low power mode
(e.g., C State) to conserve energy at low processor utilization
levels while meeting the response time constraints [12]–[14].

While cluster-level energy optimization strategies can poten-
tially save a large amount of energy by eliminating server
platform power [14], they tend to be less effective for latency-
critical workloads due to the long wakeup latencies (typically
in minutes or tens of seconds). DVFS is shown to be effec-
tive in saving data center energy for ultra-short latency jobs
with sub-millisecond service times [9], However, using DVFS,
only CPU dynamic processor power can be addressed. Finally,
energy savings could be obtained through smart control of core
level low power states [12], [14]. However, merely achiev-
ing core level power saving can be sub-optimal. This is
because, a significant amount of base power is drawn by
the multi-core processor package when active [15]. To fur-
ther improve energy efficiency, reducing the base processor
power by putting the whole package to low power idle state
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is necessary. Unfortunately, entering processor-level idle state
requires all of the cores to be in idle state at the same time,
which is difficult to achieve as idle periods of individual cores
rarely align [16].

In this article, we present TS-BatPro, an energy optimization
framework that judiciously integrates temporal batching and
spatial batching to improve data center energy efficiency. To
create chances for processor-level low power states, the tempo-
ral batching engine accumulates just the right amount of jobs
before dispatching them to an individual server. To effectively
bound the response latencies, our temporal batching engine
uses a job performance model, that considers wakeup laten-
cies from low power states and available parallelisms (number
of cores in multi-core processor). Instead of simply balancing
the workloads just by uniformly dispatching the workloads,
our spatial batching engine maintains a server status list, and
estimates the times when a server will become idle. The spa-
tial batching engine then dispatches the ready-to-execute job
batch in a first-fit order to a server that is estimated to be idle.
This further saves energy by packing the workloads onto a
subset of processors.

TS-BatPro offers new technical contributions over our prior
work [17] that leverages job batching to achieve processor-
level energy savings in three major aspects: First, TS-BatPro
uses a more rigorous statistical queuing model to estimate the
right amount of tasks to batch for various system and workload
configurations. Second, we implement a runtime load predictor
module for system utilization that is used for determining the
batching parameters dynamically. TS-BatPro adjusts its batch-
ing strategy to avoid deterioration of job tail latencies in cases
of high load prediction errors. Third, TS-BatPro is evaluated
on a variety of applications including workloads with real-
world traffic traces. TS-BatPro is shown to be adaptive under
different workloads in term of job sizes and arrival patterns.

In summary, the contributions of our work are:
1) We highlight the necessity to understanding low power

states and their power characteristics incorporated into mod-
ern multi-core processors in order to judiciously improve data
center energy efficiency.

2) We propose and build TS-BatPro, a novel framework
that performs temporal and spatial batching to optimize pro-
cessor package-level sleep state residency that results in higher
energy savings. We develop an effective analytical model that
determines batching parameters with theoretical guarantees.

3) We implement a proof-of-concept system of TS-BatPro
on a testbed with a cluster of servers and evaluate it with dif-
ferent workloads and utilization levels, including real-world
traffic traces. The results show that TS-BatPro is able to
save a significant amount of energy while still maintaining
application QoS constraints.

II. UNDERSTANDING MULTI-CORE PROCESSOR

POWER PROFILE

To better understand the power and performance characteris-
tics of modern server, we quickly review two critical concepts
concerning multi-core processors. (i) A core is an indepen-
dent processing unit that contains hardware execution contexts

TABLE I
WAKEUP LATENCIES FOR CORE- AND PACKAGE-LEVEL SLEEP

STATES ON INTEL XEON PROCESSOR [15], [18]

where the Operation System could schedule processes. (ii) A
processor, also referred to as CPU, is a physical integrated
circuit package that may integrate multiple cores. Each core
owns some private hardware components such as ALU and
L1 cache. The processor also provides resources to be shared
among all cores, i.e., last level cache and integrated memory
controller.

A. Processor Power Saving Mode

Emerging from embedded devices, low-power states are
now an important feature targeted for power management in
modern computer systems. The Advanced Configuration and
Power Interface (ACPI) [19] provides a standardized spec-
ification for platform-independent power management. The
ACPI-defined interfaces have been adopted by several major
operating system vendors [19] and supported by various hard-
ware vendors such as Intel and IBM [20], [21]. ACPI uses
global states, Gx, to represent states of the entire system that
are visible to the user. Within each Gx state, there are one or
more system sleep states, denoted as Sx. For instance, S0 is
the working state and S1 is the low-latency sleep state. Based
on the ACPI specification, a processor core is allowed to be in
a set of low-power states, i.e., C states, such as C0, C1, and
C6. C0 is the active state, and the others are low-power states.
A higher-numbered C state indicates more aggressive energy
savings but also corresponds to longer wakeup latencies.

Modern processors generally provide high parallelism by
integrating multiple cores within one package. Low-power C
states are supported at both core level and package level. Core
C state choices and residencies are generally determined by
the Operating System (e.g., the menu CPU-idle governor in
Linux) based on applications’ runtime activities. The package
C state is automatically resolved to the shallowest sleep state
among all the cores. Waking up from package C state takes
longer time than the same level of core C state since the un-
core components have to be activated before resuming the core
execution contexts. Table I shows the wakeup latencies for
various sleep states at core- and package-levels.

B. Multi-Core Processor Power Profile

In order to effectively leverage processor low-power states
to achieve energy savings, it is important to understand the
power characteristics for multi-core processors under various
core C state configurations. Figure 1 shows the power con-
sumption for a 10-core Xeon E5-2680 processor with certain
core C state enabled. We setup a micro benchmark to occupy
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Fig. 1. Power range of the 10-core Xeon processor with different level of
C state configurations.1

Fig. 2. Power efficiency of the 10-core Xeon processor with different level
of C state configurations.

a fixed number of cores n from 0 to 10. The idle cores are then
allowed to enter a controlled C state, Ci . The processor power
is read using Intel’s Running Average Power Limit (RAPL)
interfaces [22]. From the figure we can see that the power
proportionality towards number of active cores increases as
deeper level C states are chosen.

In the case when low-power C state is not used at all (C0),
the power consumption is almost flat across different numbers
of active cores. This indicates that even when all cores are idle,
the processor consumes near-peak power, which is extremely
energy inefficient. More importantly, for deeper C states, such
as C3 and C6, besides power reduction with the decrease in
the number of active cores, there is a significant amount of
power drop for the processor from having one core active to
all cores idle. This is due to the fact that the processor pack-
age has to be in C0 (active) state whenever any of the cores
are in C0 state. When all the cores are in low-power state
Ci , the entire package can enter Ci state, which further saves
power through power gating the resources that are shared by
the cores. We define power efficiency for a multi-core pro-
cessor as: (Pall−cores−active/N )

(Pn−cores−active/n)
, where N and n represent the

total number of cores and the actual number of active cores
respectively.

Figure 2 shows the processor power efficiency with dif-
ferent numbers of active cores. We can see that the power
efficiency increases with higher utilization. This indicates that,

1We use a microbenchmark that can occupy a fixed number of cores with
taskset. The rest of the idle cores are allowed to enter a controlled C state.
Each power measurement is made using RAPL for a 5-minute run. Intel’s
Turbo Boost is disabled and the performance frequency governor is used to
eliminate noise effect due to processor frequency fluctuations.

to save energy, two strategies need to be considered together:(i)
increase the utilization of the cores in the multi-core proces-
sor so that it is operating in the most energy-efficient mode.(ii)
keep all the cores idle so that a considerable amount of power
could be saved using deep sleep state.

III. MOTIVATIONAL EXAMPLE

As discussed earlier, modern multi-core processors consume
a considerable amount of base power to keep the processor
package active. Therefore, keeping the processor in package
sleep state for a longer period of time is a straightforward
strategy for saving processor energy, especially during peri-
ods when servers are underutilized. In order to reside in
package-level low-power mode, all of the cores within the
same processor need to be idle and enter the core C state
first. However, due to the increasing core count in modern
multi-core processors, the busy and idle activities for individ-
ual cores could hardly synchronize without additional control
at the processor level.

To demonstrate the package C state residencies, we setup
a Web application running Apache on the same Xeon-based
server (also studied in Section II-B). The Web application has
an average service time of 5 ms. We use 95th percentile latency
for QoS analysis, which is common for latency critical work-
loads studies [10], [23]. We assume that the QoS constraint
for the Web application is 50 ms. Also, we consider a baseline
algorithm that performs load balancing evenly across different
cores and processors without explicit job batching. Figure 3a
demonstrates the time spent in various package C states for the
baseline algorithm under utilization of 10%. The plot shows
that, even at the low utilization levels when the cores are sup-
posed to be mostly idle, the processor spends very minimal
time in the ultra power-saving package sleep (C6) state. To
study the effect of batching, we develop a batching algorithm
that simply batches a fixed number of Web requests in the front
end before dispatching the jobs to the server. Figure 3b shows
the energy consumption for the baseline and two batching
configurations that batch a range of jobs from 5 to 20.

The 95th percentile latency is shown on top of each bar.
Specifically, we could observe a tradeoff between energy
reduction and the increase in tail latencies. For example,
Batching-5 achieves around 13% energy reduction compared
to the baseline, and Batching-20 yields almost 43% energy
savings than the baseline. We note that with judicious batching,
higher energy savings can be obtained at reasonable laten-
cies: conservative batching policies only attain sub-optimal
energy saving and leave considerable latency slack between
the actual tail latency and the targeted tail latency (as in
Batching-5); aggressive batching policies, though capable of
saving substantial amount of energy, may significantly vio-
late the QoS constraints due to the job queuing effect (as in
Batching-20).

2The C state residency is reported using turbostat. Due to limitation of
the RAPL implementation on our platform, the Package C0 represents the
combined residence for package C0 and C1.
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Fig. 3. (a) shows the package C state residency breakdown for an Intel pro-
cessor running a Web server with an average of 10% utilization; (b) illustrates
the energy for baseline (without batching) and a simple batching mechanism
that accumulates 5, 10, 15 and 20 jobs respectively. The 95th percentile
latencies are shown above each bar.

IV. SYSTEM DESIGN

In this section, we present the system design of TS-BatPro.
TS-BatPro first performs temporal batching in the front end.
Specifically, instead of dispatching job requests immediately to
the individual servers, the temporal batching engine accumu-
lates a certain amount of jobs and distributes the entire batch to
a back-end server. Essentially, this creates opportunities for the
multi-core processors to use all of the cores at the same time
(when the job batch arrives), thus improving the energy effi-
ciency. As discussed in III, batching job requests aggressively
can adversely impact the job response time. To maintain the
Quality-of-Service for the jobs, TS-BatPro integrates a two-
stage queuing model that determines the maximum number of
jobs to batch without violating the target latency constraints.

To further save energy, TS-BatPro incorporates a spatial
batching engine that maintains estimated to-be idle time for
each of the servers. TS-BatPro then schedules the job batch
(from the temporal batching engine) to the first available server
in a specific search order. Through spatial batching, jobs are
concentrated on a small subset of servers such that the proces-
sors from the rest of the servers could stay in deep package
sleep state without being unnecessarily woken up. The com-
bined temporal and spatial batching make sure that significant
processor energy could be saved while still maintaining the
job QoS constraints.

A. Design of Temporal Batching

A large number of applications running on data center plat-
forms (e.g., Web service) are latency critical. The service

providers for latency-critical applications will specify a tar-
get tail latency (e.g., 95th percentile response time) as QoS
guarantees. Typically, there is a latency slack between the
application’s average job service time and the target tail
latency. As a result, we could take advantage of the latency
slack by accumulating jobs such that processors can effec-
tively utilize idle (low-power) states. We note that, as long
as the tail latency constraints are satisfied, it is acceptable to
delay executing the jobs. In our work, we assume a multi-
server infrastructure where each server has parallelism due to
the existence of multiple cores. We assume a FIFO job dis-
patching model where job requests arrive and get assigned in a
first-in-first-out order. Note that such queuing has been shown
to be optimal for tail latency [24].

The challenging task of temporal batching is to determine
the right number of jobs to batch based on the application
workload and QoS requirements. In order to derive this batch-
ing parameter, we need to understand the various delays in
the critical path of batched job processing. Figure 4 illustrates
an example for such process. Specifically, Figure 4a shows
the job batching at the front end. In this example, 6 jobs are
batched before they are scheduled onto a server. For each job,
it experiences a batching delay which starts from the time it
arrives (Tarrival ) to the time the entire batch gets dispatched.
Figure 4b demonstrates the procedure for job processing on
the local server side. Since the server has a 4-core processor,
the first 4 jobs would be serviced concurrently while the rest
two jobs will suffer from a queuing delay. Each core is work-
ing independently and will fetch a new job from the server’s
local queue once it finished its current job.

1) Determining the Number of Jobs in a Batch: To derive
batching parameter, we formalize the problem as the follow-
ing: let K be the maximum number of jobs that would be
batched temporally, j1, j2, . . . , jK are the K jobs, the total
delay for job ji , Di could be represented as:

Di = Bi + Ni + σ. (1)

where Bi and Ni are the batching delay and queuing delay
for job ji respectively and σ is a constant that represents the
overhead of job dispatching, including overhead of batching
operation and latency to wakeup a server that is currently in
package sleep state.

Let ai , i = 1, . . . ,K denote the arrival time for each job.
Then the batching delay for job i is defined as Bi = aK − ai .
We use Ii to denote the interarrival time between job i and
i+1, that is to say, Ii = ai+1 − ai . Then the batching delay
for job i is the sum of K − i interarrival times:

Bi =
K−1∑

j=i

Ij . (2)

Assume that the job arrivals to the system follow a Poisson
distribution with arrival rate, λ. Then the interarrival times
I between jobs are independent and identically distributed
(i.i.d.) random variables with a common exponential distri-
bution F (x ) = P(I ≤ x ) = 1− e−λx , x ≤ 0 with mean 1/λ.
The sum of n i.i.d exponentially distributed random variables
(r.v.s.) follows a gamma(n, λ) distribution with the following
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Fig. 4. An illustration of temporal job batching procedure assuming that the server is equipped with a 4-core processor. (a) shows that jobs are batched together
before they are dispatched; (b) demonstrates that how the batched jobs are serviced at local server. Note that the first 4 jobs are processed simultaneously
while the other jobs are queued.

probability density function:

f (x ;n, λ) =
λn · xn−1

(n − 1)!
e−λx . (3)

Thus we can get the probability density function for Bi as a
gamma(K−i, λ) distribution, and the mean is:

E (Bi ) = (K − i)/λ. (4)

We use C to denote the total number of cores in a server.
The K jobs will be dispatched to the cores. Assume that S is
the job service time with an exponential distribution of rate
μ. Obviously, the first C jobs can be directly assigned to the
cores without waiting, thus we have Ni = 0, i = 1, . . . ,C .
For job C + 1, we have NC+1 = min(S1, . . . ,SC ), which
follows an exponential distribution with rate Cμ. As expo-
nential distribution is memoryless, for job C + 2, we have
NC+2 = NC+1 + min(S1, . . . ,SC ) which is the sum of two
i.i.d. exponentially distributed r.v.s with a common rate Cμ.
Thus NC+2 follows a gamma(2, Cμ) distribution. Similarly,
for job C + j, NC+j follows a gamma(j, Cμ) distribution.
The mean queueing delay for jobs i, i > C is

E (Ni ) =
i − C
Cμ

. (5)

The total response time for a job i is Di + Si . To satisfy
the QoS constraint, the 95th percentile response time of a job
should meet the target tail latency. Assume S95 is the 95th

percentile service time based on the exponential distribution
with rate μ. Thus, for each i, we need to have:

B95
i + N 95

i + σ + S95 ≤ Q95, (6)

where Q95 is the target tail latency. As a result, K would be
the maximum value that ∀i ∈ [1:K ], Equation (6) is satisfied.

The service time distribution could be monitored at run-
time. Since the distribution typically does not change for a
specific application, μ only needs to be profiled once (for
example, in the warming up period of every workload). The
value K could then be derived by repetitively incrementing K
until Equation (6) is no longer satisfied. Algorithm 1 illustrates
the routine of temporal batching that determines the batching
parameter, K. We note that if the job arrival λ and the ser-
vice time distribution S are known, K could be pre-computed.

Algorithm 1: Derive Param. K
Input: Service time distribution: S job arrival: λ,

processor core count: C;
QoS: Q, batching overhead: σ;
Output: Batching param: K

1 let Ji be the i th job in the batch;
2 let Li be the tail latency of Ji ;
3 derive batching delay distribution Bi for Ji ;
4 derive queuing delay distribution Ni for Ji ;
5 R ← 0;
6 i ← 0;
/* check satisfiability of Equ. (6) */

7 while R < Q do
8 i++;
9 calculate tail latency Li ;

10 R ← Li ;

11 K ← i−1;
12 return K;

Particularly, it is possible to compute various values of K for
different QoS targets as a lookup table which can be looked
up by the TS-BatPro runtime to avoid repetitive calculation.
We also note that, when σ is sufficiently less than the job
service time, the value of K can be independent of average
job service time. Such observation can further be leveraged to
reduce runtime computation overhead.

Our analytical framework models workloads with expo-
nentially distributed service times and Poisson arrival pro-
cess. Similar models have been used in several prior
works [12], [25]. We observe that several realistic work-
loads evaluated in our work do not necessarily follow this
distribution. In fact, these workloads have exhibited uni-
form distribution patterns. Therefore, our analytical model of
Equation (6) would be too conservative for these workloads.
Since it’s too complicated to get closed-form system model
with uniform distributed service times, we relax the constraints
as the following:

E (Bi ) + E (Ni ) + σ + S95 ≤ Q95, (7)
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Algorithm 2: Tmp. Bat. Runtime Control

Input: System utilization history: U;
load prediction window size: l;
predicted load at time t: Pt ;
load prediction error threshold: thd;

1 let S’ be the sampled service time distribution;
2 if t < l then
3 Kt ← 1;
4 sample job service time and update S’;
5 use Kt for Tmp. Bat. in window t;

6 while t ≤ tend do
7 Pt = AVG(U [t − 1:t − l ]);
8 get Kt with Algorithm 1 using Pt , S’

/* batching backoff */
9 if |Ut−1 − Pt−1| ≥ thd then

10 Kt ← 1 ;

11 use Kt for Tmp. Bat. in window t;

Section VII has demonstrated the validations of our accurate
analytical model for workloads with exponentially distributed
service times as well as the evaluation results for real work-
loads with the relaxed model.

2) Runtime Control for Temporal Batching: When the
system arrival rate is relatively stable at a certain level, TS-
BatPro can take advantage of the same batching parameter for
a long period of time according to Algorithm 1. However, real-
world traffic loads to data centers can exhibit fluctuations and
even high burstiness. Therefore, using the same K is prob-
lematic as TS-BatPro may batch jobs too aggressively that
results in violations of QoS, or too conservatively that ends
with suboptimal energy savings. To overcome this issue, TS-
BatPro integrates a runtime temporal batching controller that
performs runtime system utilization prediction and batching
adaptation. The algorithm for the runtime controller is listed in
Algorithm 2. Specifically, the controller maintains the history
of system loads. The load predictor computes the moving aver-
age with a length of l to predict next system utilization. Once
the load is predicted, a new K value is computed and is used
in the next epoch. Note that if the error of load prediction is
high (e.g., in the presence of abrupt load changes), the batching
parameter may not be accurate, which can lead to undesirable
performance. TS-BatPro adjusts its batching strategy when it
observes a high prediction error in the last sample. Specifically,
the K value is reset back to 1 (i.e., no batching) when the error
of prediction exceeds a threshold thd. TS-BatPro will later
resume batching when the load prediction error is low. Note
that l and thd are also tunable parameters that can be adjusted
based on the needs of the users and specific applications.

B. Spatial Batching

When a batch of jobs is generated by the temporal batching
engine, the front end needs to find a server to process it. One
possible way is to evenly distribute the loads to all the work-
ing servers. However, this approach is energy inefficient for

Fig. 5. Overview of Temporal and Spatial Batching mechanisms. ti is the
estimated processor idle time for server i. t1, t2 and t3 ≥ tcur (pink-colored
servers), which means these servers are currently busy processing the batched
jobs; t4, t5 and t6 ≤ tcur (blue-colored servers), indicating these three
servers are idle.

the following reason: randomly dispatching job batches can
create frequent active phases for all servers and not enough
sleep periods. Since Operating System makes C state decisions
based on server activity, it is possible that only a shallow sleep
state would be chosen because of insufficient opportunities
for idleness. The spatial batching engine maintains a list that
shows estimation times of when each of the servers would
become idle. It then scans the list and find the first server
which is supposed to be idle: tcurrent ≥ ti for server i. It
then updates the server’s estimated idle time as tcurrent +Tb ,
where Tb is the estimated job batching time, which can be
represented as �KC �∗S95. Figure 5 shows the overview of our
combined spatial and temporal batching approach.

V. IMPLEMENTATION

We implement a proof-of-concept prototype system includ-
ing a load generator using httperf [26], TS-BatPro module and
the Apache HTTP servers on the back end. Httperf uses an
open system model where the next job arrival is independent
of the completion of the previous job. Prior study has shown
that load generators that utilize open system model can more
accurately emulate real system traffic [27]. Httperf is mod-
ified so that it is able to generate loads to multiple apache
servers. At the back end, the apache server is configured in
the way that it always maintains exactly the same number of
httpd processes as the number of cores. This makes sure that
incoming batched jobs are processed in the queuing model as
described in Section IV.

Our TS-BatPro is implemented as a separate module inte-
grated into httperf. Once initialized, the temporal batching
engine samples the services time and job arrivals to deter-
mine S95 and λ. After the two parameters are determined, it
further derives K according to the methodology discussed in
Section IV-A. The temporal batching engine then starts to per-
form job batching. Note that due to variations in job arrival
rates, the temporal batching engine will setup a timer upon
receiving the first job in each batch. The batching is com-
plete either when K jobs are accumulated or when the timer
expires, whichever comes first. This can avoid the cases where
job arrival changes and the first job cannot wait until all K
jobs arrive. λ is sampled every t seconds, which is a tun-
able parameter that controls response to load burstiness. The
spatial batching engine chooses back-end servers based on its
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estimation of next server idle phase. Note that, to eliminate
the potential of resource wear-out, the spatial batching engine
would shuffle the order of the servers in the list every T sec-
onds so that all of them are exercised equally in the long run.
We set t to 1 second and T to 60 seconds in our experiments.

VI. EXPERIMENTAL SETUP

A. Server Platform

We deployed a testbed with a cluster of 18 servers. Two
servers are working on the front end, within which one
server generates job requests and the other server collects
power measurements for the back end servers. In the back
end, one Intel Xeon E5-2680 based server is used for fine-
grained CPU power measurements (using the RAPL interface)
in single-server experiment; the other 15 Intel Xeon E5650-
based servers from the Dell Poweredge M1000e blade system
are used for multi-server system evaluations. All of the back
end servers are configured to run Apache Web service. These
servers are interconnected with a NETGEAR 24-port Gigabit
switch (star topology). We note that with this settings, all the
network traffic is confined within the cluster, which elimi-
nates unnecessary background traffic. Since the blade servers
do not support RAPL interface, we utilize the IPMI interface
for system-level power reading [28]. The server power con-
sumption is queried and saved at every 1 second interval. We
conservatively set the end to end wakeup latency from pack-
age sleep state to 1 ms (the actual transition time is usually
shorter than 1 ms [15]).

B. Benchmark Selection and Load Generation

We run a set of benchmarks that cover a variety of latency-
critical application characteristics in the cloud. We build a
generic framework based on the Apache Web server. For each
user request received, the Apache application server runs the
specific benchmark in the back end. We use the PARSEC [29]
benchmarks as the back end service due to the fact that they
are designed to represent latency-critical emerging workloads
in the cloud computing environment including image process-
ing, content search, and computer vision [30]. We develop
CGI scripts for the Apache servers. The CGI script is flex-
ible in that benchmarks could be easily integrated to run on
the Apache framework. We select five applications: Bodytrack
(108 ms), Raytrace (79 ms), Vips (42 ms), Fluidanimate
(33 ms) and Ferret (21 ms). The data in each brackets rep-
resents the average execution time for the application. Httperf
is set to generate job arrivals based on exponential distribu-
tion. We configure httperf to generate three different levels
of utilization: 10%, 20%, and 30%. Additionally, we also use
two real-world traces characterizing job arrivals patterns for
Wikipedia [31] and NLANR [32], which exhibit different bursti-
ness patterns. We create two synthetic benchmarks running in
the backend for the two traces, with an average execution time
of 5 ms and 110 ms respectively.

C. TS-BatPro Parameter Configuration

The batching parameter K is determined based on the algo-
rithm shown in Section IV-A. In our experiment, we observe

that the K value derived from the analytical model may violate
the target QoS on a small number of occasions. One poten-
tial reason is that there exists resource contention between
concurrent jobs. To sustain the QoS target, we set the actual
value to K−ε. We observe that ε = 2 works practically well
for all of our cases. Additionally, we have explored a variety
combinations of l and thd, which denotes the size of load his-
tory and threshold for load prediction error respectively (See
Section IV-A). Based on our observations, we set l to be 5
and thd to be 0.05. Finally, since the target QoS for differ-
ent applications may differ, we define QoS as the tail latency
normalized to the job’s average service time. 95th percentile
response time is commonly set as the target SLA (service level
agreements) for latency-critical workloads. We observe that
most recent studies aim for a single tail latency for each bench-
mark [10], [23], [33]. We select two classes of tail latency
targets in order to study the potential of TS-BatPro in energy
optimization over both stringent and less-tight latency bounds.
Typically the tail latency values range between 2.5×∼10×.
Correspondingly, we set 10x as the relaxed QoS constraint
(QoS-relaxed) and 5x as the tight QoS constraint (QoS-tight)
to understand the implications of energy-latency tradeoffs with
different user preferences for QoS.

VII. EVALUATION OF TS-BATPRO

We evaluate TS-BatPro in two steps. Specifically, we first
demonstrate the energy savings and job performance using just
temporal batching on the Intel Xeon E5-2680 server. Then we
enable both temporal and spatial batching engines on the blade
system and illustrate the potential energy savings.

1) Temporal Batching Effectiveness: To evaluate the effect
of temporal batching, we use a single Apache HTTP server.
Httperf generates three different levels of system utilization
levels:10%, 20% and 30%. For this experiment, we run the
five PARSEC benchmarks. Note that the target tail latency
(QoS) has to be provided to the temporal batching engine.
The two QoS constraints are set in the temporal batching
engine. For example, for Bodytrack, the two target latencies
are 540 ms (QoS-tight) and 1080 ms (QoS-relaxed). Figure 6
shows the package C state residency for Bodytrack with and
without temporal batching under the three system utilization
levels using the two different QoS constraints. We can see
that without batching, the processor spent less than 20% in
the package C6 sleep state under 10% utilization (Figure 6a),
which is significantly lower than the ideal residency of 90%
under ideal energy proportionality. Server residency in the
power-saving states almost diminishes as the load increases
to 20% and 30% (Figure 6b and Figure 6c). This clearly
indicates the inefficiency of low power state management in
under default OS settings. On the other hand, with temporal
batching with TS-BatPro, the Package C6 residency is signif-
icantly improved compared to the baseline without batching.
For instance, the processor spent 41% more time in package
C6 state under 10% utilization (Figure 6d), and spent 29%
more time at 30% system utilization (Figure 6f). Meanwhile,
we observe that the package C6 state residency increases as the
target latency changes from QoS-tight to QoS-relaxed. This is
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Fig. 6. Package C state residency breakdown for Bodytrack benchmark. Figure (a), (b) and (c) correspond to the residency breakdown with baseline
configuration (no batching) under 10%, 20% and 30% system utilization respectively. Figure (d) (e) and (f) are for the same plots under Temporal Batching
with tight Qos; Figure (g) (h) and (i) are for the same plots under Temporal Batching with relaxed QoS.

because, since longer target latency allows for more aggres-
sive batching, we observe higher chances of entering deep
sleep state. Finally, the low-power state residency decreases
much slower as the utilization level increases, compared to the
baseline. Figure 7 illustrates the C state residency for the Vips
benchmark. Similarly, the percentage of package C6 state res-
idency is greatly increased under different system utilization
levels. Moreover, we can see that, compared to Bodytrack, the
C6 state residency is slightly less. We note that the job exe-
cution time of Vips is much shorter than that of Bodytrack.
Therefore, under the same utilization, the inter-arrival times for
job batches are relatively longer for Bodytrack, which favors
entering of deep sleep state such as C6. Regardless, we can
see considerable improvement in low power residency that will
eventually reflect as energy savings.

Figure 8 and Figure 9 demonstrate the response time CDF
for Bodytrack and Vips. We find that the temporal batching
engine is able to meet the target constraint. For example, the
actual tail latencies for Bodytrack (with average service time
of 108 ms) are 557 ms and 986 ms under 20% system utiliza-
tion for QoS-tight and QoS-relaxed receptively. For Vips (with
average service time of 42 ms), the achieved tail latencies are
211 ms and 358 ms under 20% utilization using QoS-tight
and QoS-relaxed. Notably, TS-BatPro can effectively shift the

response time for various workloads regardless of the actual
loads. We note that TS-BatPro’s batching algorithm can suc-
cessfully bound the target latency through batching for all the
benchmarks.

Table II summarizes the energy savings of temporal batch-
ing for all five of PARSEC benchmarks in our study.
Consistently, the energy saving increases as the QoS con-
straint is relaxed (e.g., from QoS-tight to QoS-relaxed) as
we have observed before. As the utilization level increases,
the energy saving reduces under all QoS settings in general.
This is due to the fact to the processor idle intervals tend to
be shortened with higher utilizations. It is also observed that
batching can be more beneficial for applications with relatively
larger job sizes (e.g., Bodytrack). Interestingly, when changing
the system load from 10% to 20%, for each benchmark, TS-
BatPro achieves more relative energy savings under QoS-tight
than under QoS-relaxed. This is because under QoS-tight, the
amount of batching is constrained by the target job latency
especially at lower utilization levels. Under QoS-relaxed, job
batching is constrained by the higher job arrivals especially
at the higher system utilization. Overall, we can see that tem-
poral batching can save between 8.7% and 48% CPU energy
depending on the workloads, server utilization levels and QoS
constraints.
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Fig. 7. Package C state residency breakdown for Vips benchmark. Figure (a), (b) and (c) correspond to the residency breakdown with baseline configuration
(no batching) under 10%, 20% and 30% system utilization respectively. Figure (d) (e) and (f) are for the same plots under Temporal Batching with tight QoS;
Figure (g) (h) and (i) are for the same plots under Temporal Batching with relaxed QoS.

Fig. 8. Latency CDF for Bodytrack under 10%, 20% and 30% utilization using TS-BatPro’s temporal batching.

We also evaluate our analytical model in Equation (6) by
applying the temporal batching to a synthetic workload whose
service time is exponentially distributed with mean of 50 ms.

K values are obtained from Equation (6) and Algorithm 1 for
different QoS and utilization levels. Table III summarizes the
energy savings and performance of temporal batching for the
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Fig. 9. Latency CDF for Vips under 10%, 20% and 30% utilization using TS-BatPro’s temporal batching.

TABLE II
POWER SAVINGS FOR ALL BENCHMARKS USING TS-BATPRO’S TEMPORAL BATCHING. ENERGY SAVINGS ARE NORMALIZED TO THE

BASELINE (OS DEFAULT C STATE MANAGEMENT) ENERGY CONSUMPTION

TABLE III
POWER SAVINGS AND PERFORMANCE FOR A SYNTHETIC WORKLOAD USING PARAMETERS DERIVED FROM ANALYTICAL MODEL. ENERGY SAVINGS

ARE NORMALIZED TO THE BASELINE ENERGY CONSUMPTION. PERFORMANCES ARE NORMALIZED TO MEAN SERVICE TIME

synthetic workload. Consistently, the energy saving increases
as the QoS constraint is relaxed (e.g., from QoS-tight to QoS-
relaxed). We can also see that the performance constraints (in
terms of 95th percentile latency) were satisfied. Our analytical
model finds appropriate K’s to save energy without violating
the QoS constraints.

A. TS-BatPro With Real-World Traffic Traces

In the prior section, we have demonstrated the performance
of temporal batching in TS-BatPro using a fixed job arrival rate
with exponential inter-arrival time distribution. It is worth not-
ing that in real-world cases, system load is typically not known
ahead of time. More importantly, the actual load may fluctu-
ate over time. To evaluate the temporal batching performance
of TS-BatPro, we build two workloads using two real-world
traffic traces. Each trace records the job request arrival times-
tamps that can be used to replay the network traffic. Figure 10

demonstrates the traces of utilizations for two workloads: the
bursty NLANR workload [32] (Figure 10a), and the non-bursty
Wikipedia workload [31] (Figure 10b) over one hour duration.
As shown in our experiments, NLANR exhibits relatively high
load fluctuations with a dynamic range of 29.0%. Differently,
the Wikipedia trace only shows a few short spikes with most
of the system utilization centered around 11.5%.

As discussed in Section IV, TS-BatPro incorporates a run-
time load predictor to estimate the system utilization in the
next time window in order to determine the batching size
K. Figure 11 illustrate the original load and the predicted
load over time. We can see with a moving average of 5
history samples, TS-BatPro is able to predict the system uti-
lization with very high accuracy. Specifically, the average
prediction error (i.e., difference between the actual loads and
the predicated load levels) are less than 2% in terms of
utilization. We note that TS-BatPro’s predictions on work-
loads are performed at a much finer granularity (seconds),



246 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 3, NO. 1, MARCH 2019

Fig. 10. System utilization for two traffic traces for one hour: NLANR (Top)
shows high level of burstiness while Wikipedia (Bottom) shows only marginal
fluctuations.

in comparison to peak/off-peak transition times (typically
several minutes to hours). As a result, we observe very
minimal changes of prediction error over long-period of
traces. Additionally, inaccuracies in load prediction would
not introduce application performance violations as TS-BatPro
cautiously disables batching when a high prediction error is
observed.

We modified httperf so that the load generator can generate
job arrivals by replaying the two traffic traces. We run the two
trace-based workloads using the Apache framework and set the
target latency for both workloads to QoS-long. Figure 12 and
Figure 13 illustrate the package C-state residency breakdown
for the two workloads over a representative 12-minute interval.
As expected, for NLANR, the baseline has very low C6 state
residency (Figure 12a). TS-BatPro, on the other hand, creates
over 60% C6 residency. Note that we can observe a sharp dip
of C6 residency curve in Figure 12b and Figure 13b. This cor-
responds to the warming up period when the temporal batching
engine monitors the job service times and collects samples
of utilization history for further load prediction. Due to the
burstiness of job arrivals in NLANR, we observe higher fluc-
tuations of the C6 state residences as compared to Wikipedia.
Moreover, as mentioned in Section IV, TS-BatPro dynamically
halts job batching when the load prediction error is higher than
a certain threshold (5% in our experiments). In our exper-
iments, we see that only around 1.2% of time intervals in
NLANR are subject to disabling of temporal batching (i.e.,
reset K to 1) due to high load prediction errors while no K
value reset is performed for Wikipedia. The energy savings
and actual tail latency for these two workloads are shown
in Figure 14. Overall, TS-BatPro has 22% energy saving on
Wikipedia and 33% energy saving on NLANR while satisfying
QoS constraints.

B. Combined Temporal and Spatial Batching

We perform both temporal and spatial batching on all the
benchmarks as mentioned in Section VI at the average system
utilization level of 10%. The experiments are conducted on the
18-server cluster. The target tail latency (95th percentile) is set
to QoS-tight for the benchmarks. Figure 15 shows the overall
energy savings for the entire cluster. Across all the bench-
marks, temporal batching is able to achieve a steady energy
savings between 42%-49%. TS-BatPro, with combined tem-
poral and spatial approaches, can provide an additional (upto
19%) energy saving and achieves upto 68% saving compared
to the baseline. Specifically, the additional energy saving ben-
efit is due to the fact that TS-BatPro packs the loads to a
fixed subset of processors. Because of the effectiveness of
spatial batching, TS-BatPro is able to yield similar system
power among different benchmarks. Differently, in the base-
line approach, shorted jobs tend to prevent processors from
entering deep package sleep, significantly increasing the power
consumption for the servers.

VIII. DISCUSSION

A. Scalability of TS-BatPro

In the evaluation, we use a centralized controller for the
temporal and spatial batching in TS-BatPro. This may cause
some scalability issues when the data center has thousands
of servers. We note that in these large-scale data centers,
TS-BatPro can be easily adapted with minimal modification.
Specifically, we can divide the data center into multiple clus-
ters, and each cluster will have its own TS-BatPro controller
that coordinates the batching operation. Such scheme works
well with many existing data center application as a lot of
data center service are stateless [6]. That is, one user request
can be serviced by any of the application servers in the pool.
Eventually, each server cluster acts as a logical data center
that can be effectively managed by TS-BatPro.

B. Energy optimization in Data Center Networks

TS-BatPro largely considers energy optimization and QoS
management for data center servers. We note that TS-BatPro
can potentially benefit energy optimization in data center
networks as well. Many prior works have proposed active
power management on network devices using techniques such
as dynamic link rate adaptation [34], [35]. However, merely
reducing active power alone is not sufficient for network
devices as a large portion of switch power is consumed simply
by keeping the major components ON (e.g., line cards) [36]. A
recent study has demonstrated the promise of using low-power
states for both switches and servers to achieve high energy
savings [37]. We note that TS-BatPro essentially proposes an
effective scheduling framework that can be augmented to cre-
ate idleness in both servers and network devices to achieve
comprehensive energy savings in data centers.

IX. RELATED WORK

Prior works [8], [11] have used DVFS based mechanisms to
conserve server energy. Lo et al. [9] leverage Running Average
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Fig. 11. TS-BatPro’s predictions on NLANR traffic.

Fig. 12. C-state residency for NLANR for the baseline and TS-BatPro’s
temporal batching.

Power Limit to dynamically adapt the runtime power of data
center according to job latency feedback. However, at low
server utilization, static power dominates and DVFS alone is
not effective. Also, due to device scaling, the headroom for
voltage scaling has largely shrunk. As a result, techniques that
address static power and energy are needed.

Maccio and Down [38] propose an analytical model to
determine an optimal policy for on/off single server systems
with FIFO allocation. Gebrehiwot et al. [39] study energy-
performance tradeoff for a single server utilizing multiple sleep
states. The server enters a random sleep state after some idling
time, and restarts the server after a number of jobs are gath-
ered in the queue. The system is modeled as an M/G/1 queue
with Poisson job arrivals and general distributions of service
time, setup delay and a timer. Sleepscale [12] jointly utilizes
speed scaling and server sleep states to reduce the average
power for single servers while satisfying the QoS constraint
of normalized request latency.

To address energy-performance tradeoff in server farms,
cluster level power management is used in prior works.
Gandhi et al. [6], [40] develop mechanisms that reduce power
consumption of the multi-server system by controlling the
number of ON servers while satisfying the response time SLA.

Fig. 13. C-state residency for Wikipedia for the baseline and TS-BatPro’s
temporal batching.

Fig. 14. Relative energy savings (with respect to the baseline without batch-
ing) and 95th percentile latencies (shown above each bar) using temporal
batching for Wikipedia and NLANR workloads with QoS-relaxed.

Yao et al. [15], [41] have demonstrated the adaptive use of
system sleep states and/or CPU lower power state to tradeoff
tail latency for increased energy efficiency. Differently, TS-
BatPro is designed to optimize multi-core processor saving by
leveraging low-power package sleep states. We note that these
techniques are essentially complementary to TS-BatPro, and
can be potentially integrated with TS-BatPro for more energy
savings.

Knightshift [42] explores more specialized approaches such
as exploiting heterogeneity of processor cores to improve
energy. Two execution modes are utilized—one providing high
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Fig. 15. Power savings for various benchmarks with Temporal Batching
and TS-BatPro at 10% utilization. Energy saving is normalized based on the
baseline energy.

performance while consuming higher power; the other being
an active low power mode for low-utilization periods to save
power. The model is extended by Wong and Annavaram [43]
to provide cluster-wide energy proportionality. However, to
preserve generality of our solution and study the applicability
of our techniques on many current warehouse scale systems,
we model homogeneous servers and cores with same capa-
bility. We note that further power savings can be obtained at
the application level through carefully tuning them for usage
of processor resources [44], [45], load-balancing tasks across
cores to avoid keeping cores unnecessarily active [46], and
eliminating unnecessary cache misses that could potentially
cut down power as well [47].

Horvath and Skadron [4] studied the applicability of using
multi-mode energy management in multi-tiered server clusters.
A sleep state demotion algorithm is proposed based on analyti-
cal models. Several batching and scheduling mechanisms have
been proposed for energy saving in server systems [48], [49].
Meisner and Wenisch [16] propose architectural support to
facilitate sleep state management on multi-core servers that
include scheduling policies to delay, preempt and execute
requests and artificially create common idle and busy periods
across cores of a server. However, the penalty of delaying and
preempting requests are not considered. In our work, a real-
istic power model is used and implemented on real systems
to evaluate the proposed policies. Finally, we note that server
energy optimization proposed in TS-BatPro, can be integrated
with more energy-efficient data center network topologies [50]
to boost system energy savings.

X. CONCLUSION

In this paper, we propose TS-BatPro, an efficient data cen-
ter energy optimization framework that judiciously integrates
spatial and temporal job batching to save energy for multi-
core data center servers while meeting the QoS constraints.
TS-BatPro performs effective global job batching and schedul-
ing by modeling job performance and power characteristics on
multi-core servers. We developed a prototype of TS-BatPro
on a physical testbed with a cluster of servers and evaluate
TS-BatPro on a variety of workloads. Our results show that
temporal batching achieves a significant amount of processor-
level energy saving under various utilizations and traffic pat-
terns compared to the configuration without batching. Through
combining temporal and spatial batching, TS-BatPro achieves
upto 68% energy saving under various QoS constraints.
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