
PopCorns: Power Optimization using a Cooperative Network-Server approach for

Data Centers

Bingqian Lu, Sai Santosh Dayapule, Fan Yao, Jingxin Wu, Guru Venkataramani, Suresh Subramaniam

Department of Electrical and Computer Engineering

The George Washington University

Email:{bqlu, saisantoshd, albertyao, jingxinwu, guruv, suresh}@gwu.edu

Abstract—Data centers have become a popular computing
platform for various applications, and account for nearly 2%
of total US energy consumption. Therefore, it has become
important to optimize data center power, and reduce their
energy footprint. With newer power-efficient design in data
center infrastructure and cooling equipment, active compo-
nents such as servers and the network consume most of the
power with emerging sets of workloads. Most existing work
optimizes power in servers and networks independently, and do
not address them together in a holistic fashion that can achieve
greater power savings. In this paper, we present PopCorns, a
cooperative server-network framework for power optimization.
We propose power models for switches and servers with low-
power modes. We also design job scheduling algorithms that
place tasks onto servers in a power-aware manner, such that
servers and network switches can take effective advantage of
low-power states. Our experimental results show that we are
able to achieve more than 20% higher power savings compared
to a baseline strategy that performs balanced job allocation
across the servers.

Keywords-Power Optimization, Data Center, Low Power
States, Job scheduling algorithms

I. INTRODUCTION

Data centers have spurred rapid growth in computing, and

an increasing number of user applications have continued

to move to cloud settings in the past few years. With this

growing trend, data centers now account for about 2% of

US energy consumption [1]. Many public cloud computing

environments have power consumption on the order of

several Gigawatts. Therefore, power optimization is a key

challenge in data centers.

Data center servers are typically provisioned for peak

performance to always satisfy user demands. This, however,

also translates to higher power consumption. Hardware in-

vestments have resulted in power saving mechanisms, such

as dynamic voltage and frequency scaling (DVFS) and low-

power or idle states [2]. Through using such mechanisms,

as servers continue to become more energy-proportional,

other active data center components such as the data center

network are growing to dominate overall power [3] [4].

Therefore, it is important to holistically address the power

consumed by both data center servers and networks for an

effective solution to this problem.

We note that power reduction strategies in network

switches and routers have been studied in large-scale net-

work settings. Gupta et al. [5] proposed a protocol-level

support for coordinated entry into low-power states, where

routers broadcast their sleep states for routing decisions to

be changed accordingly. Adaptive link rate (ALR) for Eth-

ernet [6] allows the network links to reduce their bandwidth

adaptively for increased power efficiency. Such approaches

may not be very effective in data center settings where

application execution times have a higher dependence on

network performance and Quality of Service (QoS) demands

by the users.

In this paper, we propose PopCorns, a framework to

optimize data center power through a cooperative network-

server approach. We propose a power model for data center

servers and network switches (with support for low-power

modes) based on power measurements in real system settings

and memory power modeling tools from MICRON [7] and

Cacti [8]. We then study job placement algorithms that take

communication patterns into account while optimizing the

amount of sleep periods for both servers and switch line

cards. Our experimental results show that we can achieve

more than 20% energy savings compared to a baseline server

load-balancing strategy.

We note that further power savings can be obtained

at the application level through careful tuning for usage

of processor resources [9] [10] or through load-balancing

tasks across cores in multicore processor settings to avoid

keeping cores unnecessarily active [11]. Such strategies can

complement our proposed approach, and boost further power

savings in data center settings.

In summary, the contributions of our paper are:

1. We propose a power model for data center servers and

network switches based on available power measurements

in real system settings and memory power modeling tools.

We formulate a power optimization problem that jointly

considers both servers and switches.

2. We propose an algorithm that considers servers and

networks to co-ordinate server task placement while con-

sidering power drawn by network components. Transition

between power states in switches is controlled by buffer sizes

and certain traffic thresholds.

3. We compare our approach against a typical server

load-balancing mechanism for task placement in terms of

overall data center power consumption, and job latency. Our

experimental results show that we are able to achieve more

than 20% power savings.



II. SYSTEM MODEL

In this section, we describe our power models for switches

and servers, as well as models for jobs and the whole system.

A. Modeling Switch Power

1) Switch Port: To tackle the energy consumption in

network equipment, the IEEE 8022.3az standard introduces

the Low Power Idle (LPI) mode of Ethernet ports, which is

used when there is no data to transmit, rather than letting

the port be in active state all the time. The idea behind LPI

is to refresh and wake up the port when there is data to

be transmitted; the wakeup duration is usually small. Also,

the energy consumption of a physical layer device (PHY) in

LPI mode is significantly lower than when it is in the active

mode [12].

We assume that there are three power states for each

switch port: active, LPI, and off, and the corresponding

average power consumption for each state under different

link rates is shown in Table I. These power numbers are

based on measurements on Intel’s 82573L Gigabit Ethernet

Controller [13].

Link Rate (Mbps) Active (mW) LPI (mW)

0 0 0

10 504 194

100 483 314

1000 1217 1010

Table I: Average port power consumption in active and LPI states.

2) Network Switch: Due to lack of detailed power models

for commercial switches, we propose and derive our switch

power model based on available data and memory power

modeling tools from Micron [7]. A switch consists of several

components such as ASICs, TCAMs, DRAM memory, and

ports. Our power model for each component is explained

below:

1. ASICs/Network processors: Operations such as parsing

the packet contents to read the header, looking up routing

tables, and forwarding to the corresponding destination

port are performed by the network processor. According

to Wobker’s report [14], this consumes 52% of the to-

tal power in enterprise Cisco line cards. Accordingly, the

ASIC/network processor’s power consumption is computed

to be 165 W. Based on studies done by Iqbal et al. [15]

and Luo et al. [16], we assume a 60% power reduction due

to power gating of ALU and micro engines in the network

processor.

2. DRAM memory: The active power consumption of

DRAM depends on the frequency of accesses, and leak-

age/static power depends on the transistor technology. Mi-

cron Power calculators [7] for RLDDR3 (Reduced latency

DRAM) show a power consumption of 1571 mW per 1.125

GB of memory when active and 314 mW when in sleep. We

assume the line card to integrate 8 such memory chips.

3. TCAM (Ternary content addressable memory): A typ-

ical 4.5 Mb TCAM structure which is used to offload high-

speed packet lookup, consumes 15 W of power [17]. We

model the static leakage power for a 4.5 Mb CAM structure

using Cacti [8], which estimates the power consumed during

the idle sleep period when memory is not accessed.

4. Line card interconnect fabric: The line card intercon-

nect fabric consumes 23W during active power state [18].

5. Host processor: Each line card includes a host processor

which is used in line card boot and initialization process

for copying routing table information from the switch fabric

card. The processor is kept running in sleep mode to keep

the routing tables synchronized and to wake up the line card

on packet arrival. We assume a 30% power reduction due to

dynamic frequency scaling during line card sleep [19].

6. Ports: Combining the port LPI model in Section II-A1,

for a typical line card with 48 ports at 1 Gbps, we calculate

the total port power.

7. Local power supply: Based on Liu et al. [19], we

assume a 50% reduction in the power loss due to reduced

power consumption during the sleep state.

Table II shows the power consumption used in our exper-

iments.

Component Active Power (W) Sleep Power (W) Sources

ASICs/NW processor 165 66 [18] [15]
TCAM/Fwd. Engines 15 1.26 [17] [8]

DRAM 12.5 2.4 [7]
Interconnect Fabric 23 23 [18]

Host Processor 29 20 [18] [19]
Ports 48 x 1.21 48 x 1.01 [13]

Local Pwr supply 30 15 [18] [19]

Total 332 176

Table II: Power model for a 48-port switch.

Apart from the line cards, we model a constant baseline

power of 120 W for the rest of the switch in ON state, which

includes switch supervisor module, the backplane, cooling

systems, and switch fabric card, based on Pan et al. [18].

We consider a 25 µs wakeup latency from sleep state for

the line card [18].

B. Modeling Server Power

We use the power consumption model of an Intel Xeon

E5-based server from our prior work [20]. For simplicity,

we model servers that can run a single task at a given time

and utilize C6 (package sleep) state when the processor is

idle. Our server power model is shown in Table III.

Active State C6 Sleep state Wakeup Latency Source

92W 37W 1ms [21] [20]

Table III: Server power model.



Figure 1: Example of a job DAG. Nodes represent tasks, with
execution latency showed next to them. Edges represent flows and
their sizes.

Figure 2: Fat tree topology.

C. Modeling Job

We model the execution of jobs at the server side as

follows. A job consists of multiple inter-dependent tasks

that include both spatial and temporal inter-dependence.

Application tasks are typically executed by specific server

types. For example, a web service request will first be

processed by an application or web server, and a search

request is processed by a database server, and this kind of

task relationship is called spatial inter-dependence. In terms

of temporal inter-dependence, a task cannot start executing

until all of its ‘parent’ tasks have finished their execution,

and until after their results have been communicated to the

server assigned to the task. A job is considered to have

finished when all of its tasks finish execution. A server core

can only process one task at a time; we assume single-core

processors in this paper and leave multicore processors for

future work.

Each job j can be represented as a directed acyclic graph

(DAG) G j(V j,E j), where V j is the set of tasks of job j. In

the DAG, if there is a link from task i to task r, then task

i j must finish and communicate its results to task r j before

r j can start processing. Each task v j ∈ V j has a workload

requirement, namely task size or execution time requirement

w
j
v for the core. For each link in E j, there is a network flow

with size D
j
l assigned to it, which denotes the transmission

of results over link l (from the task at the head of DAG link

to the task at the tail). Figure 1 shows an example of a job

DAG.

D. Data Center System

Figure 2 shows the classic fat tree topology used in our

network-server system [22]. In our system, each switch

consists of a number of distributed cards plugged into the

backplane, which provides the physical connectivity [18].

Figure 3: Schematic of switch, line card, and its ports.

Among these cards, there are multiple line cards for forward-

ing packets or flows, and can be in active, sleep, or off state.

In turn, each line card contains several ports connecting to

external links, which can also be in active, LPI, or off state.

A typical schematic of switch, line card, and port is shown

in Figure 3.

III. PROBLEM STATEMENT

In this section, we formulate joint server and data center

network power optimization as a constrained optimization

problem using the switch power model and job model

defined above. First, to obtain the power consumption of a

switch k, assume the number of active line cards and ports

are ζ active
k and ρactive

k respectively, and the number of line

cards in sleep state and ports in LPI mode are ζ
sleep
k and

ρLPI
k respectively. Since the total power of a switch is the

sum of base power (Pbase
k ), power of ports, and power of line

cards, we have Pswitch
k = Pbase

k + ζ active
k ∗Pactive

linecard + ρactive
k ∗

Pactive
port +ζ

sleep
k ∗P

sleep
linecard +ρLPI

k ∗PLPI
port . To calculate the power

consumption of server i, since our system considers the core

as the basic processing unit in a server, the total power of

a server is the sum of idle power Pidle
i and dynamic power,

which is linear in the number of active cores Con
i . Then,

we have Pserver
i = Pidle

i +Con
i ∗Pon

core, where Pon
core denotes the

power consumed by an active core.

Then the joint power optimization problem can be for-

mulated as: minimize ∑
Nswitch

k=1 Pswitch
k +∑

Nserver
i=1 Pserver

i under

both network-side and serve-side constraints, such as link

capacity, computation resources, etc.

IV. SOLUTION APPROACH

Given a set of jobs, modeling the joint power optimization

problem as an Integer Linear Programming (ILP) formu-

lation is a solution, and optimization tools like MathProg

can be used to provide a near-optimal result. However, the

computation complexity increases exponentially with the

number of servers and switches [23]. In a typical data center

with tens of thousands of servers and hundreds of switches,

it is computationally prohibitive to solve the optimization



Symbol Description

Ts Traffic threshold for waking up a switch port from LPI state

Tf Traffic threshold for waking up a switch port from off state

Ta Traffic threshold for a port to enter LPI state

QiL Current traffic load of port i in line card L

τ
port
wakeup Port wakeup latency from LPI state

τLC
wakeup Line card wakeup latency from sleep state

τ
port
o f f Port wakeup latency from off state

τLC
o f f Line card wakeup latency from off state

d
port
wakeup Port wakeup delay

dLC
wakeup Line card wakeup delay

d
port
LPI Delay for a port to enter LPI state

dLC
sleep Delay for a line card to enter sleep state

dLC
o f f Time threshold for a line card to enter off state

Table IV: Notations in PopCorns switch state transition algorithm.

problem. We therefore propose a computationally-efficient

heuristic algorithm in this work.

A. Heuristic Algorithms

In this section, we first present a power management

algorithm for line card and port power management, a simple

power transition algorithm for servers, and then propose

a joint job placement and network routing algorithm for

solving the optimization problem efficiently.

1) Switch State Transition Algorithm: As not all switches

need to be active all the time, if we can intelligently control

the transitions to active and low-power states for ports

and line cards, then DCN power consumption could be

reduced. Therefore, we propose the Switch State Transition

Algorithm 1 to implement network power management. The

notations are elaborated in Table IV. An overview of our

approach is shown in Figure 4. We assume that there is

a global controller that keeps record of all the line cards,

ports, and server status, including their power state and

queue size. The global controller also monitors the current

traffic load (number of pending flows or packets) at each

port and decides whether the current line card can enter

low-power state. In our design, we consider the line card

and port power states and their transition as follows: if a

line card is in sleep or off state, then all the ports are also

in LPI or off state; if a line card is active, then its ports

can be in LPI or active state, and ports in LPI state can

be woken up to become active with a small latency τ
port

wakeup.

When a flow arrives at port i of line card L, if L is in sleep

state and current traffic load QiL of i exceeds threshold Ts,

then both i and L will be woken up, with wakeup latency

τ
port
wakeup and τLC

wakeup respectively. In contrast, if QiL is below

Ts, then the flow is buffered in the queue of port i, and i

and L are scheduled to be woken up after wakeup delay

d
port
wakeup and dLC

wakeup respectively. However, if other flows

arrive during this wakeup delay and cause QiL to exceed Ts,

the scheduled wakeup is canceled and i and L begin waking

up immediately. When a flow is transmitted from i of L,

Figure 4: Power state transition overview.

if QiL is below Ta, then i will enter LPI mode after delay

d
port
LPI . If all the ports of L are in LPI state, L enters sleep

state after dLC
sleep. Once the sleeping period of L exceeds dLC

o f f ,

L together with its ports enter the off state immediately. For

a port i in off state, once its QiL accumulates to Tf , both i

and L begin waking up with latency τ
port
o f f and τLC

o f f .

2) Server State Transition Algorithm: As mentioned in

Section II-B, we simply model two power states for the

server: active and C6 sleep state. Algorithm 2 describes our

policy on managing the server power states. We assume that

each server has a local queue to buffer the tasks. When

dispatching tasks, to select a pool of available servers, we

first consider active servers with queue size below threshold

T server
s . If all the active servers have a queue size larger

than T server
s , then these servers will be considered available

too. However, if all the servers are in sleep state, then

some of them must be woken up to execute incoming tasks.

Algorithm 3 explains which servers to choose in this case.

After selecting available servers (Sava in Table V), specific

task placement policy is also described in Algorithm 3.

3) Cooperative Network-Server Algorithm: The main

idea of our algorithm is to jointly consider the status of

the pool of servers and the network before assigning jobs.

To be more specific, for a job consisting of several pairs of

interdependent tasks, if we place task pairs based on their

interdependence, and choose the core pair with the minimum

routing cost (in terms of power), then the placement together

with its corresponding routing path can be more energy-

efficient.

Based on this idea, we propose the Cooperative Network-

Server (CNS) algorithm shown in Algorithm 3. The nota-

tions are shown in Table V. As mentioned in the previous

section, we have a global controller to keep track of all

the line cards, ports, and server status. Thus, when a job

consisting of a set of interdependent tasks arrive, we first

check the servers to select all server pairs whose power states

are active and local queue sizes do not exceed a threshold. If

no server satisfies these requirements, then servers with full

local queue and servers in C6 sleep state will be selected.

The set of eligible servers is called as Sava. Note that if a

task is assigned to a server in sleep state, then the server will

be woken up immediately and will enter active state after a



Algorithm 1: Switch State Transition Algorithm

Input: Ts, Ta, QiL

Output: Line card and port power state transition

1 Initialization: All line cards are in sleep state, all ports

are in LPI state;

2 while there are jobs to be executed do

3 if a flow arrives at port i of line card L then

4 if L is in sleep state then

5 if QiL > Ts then

6 L begins waking up from sleep state;

7 i begins waking up from LPI state;

8 end

9 else

10 L begins waking up after dLC
wakeup;

11 i begins waking up after d
port
wakeup;

12 end

13 end

14 end

15 if a flow is transimitted from port i of line card L

then

16 if QiL < Ts then

17 i enters LPI state after d
port
LPI ;

18 if when i enters LPI state, all the ports of L

are in LPI state then

19 L enters sleep state after dLC
sleep;

20 if sleeping period of L exceeds dLC
o f f

then

21 L and all its ports enter off state

immediately;

22 end

23 end

24 end

25 end

26 end

wakeup latency.

For each server pair in Sava, we compute the shortest

routing path in terms of the additional power consumption

incurred in the current system state, if that server pair is

selected for executing a pair of interdependent tasks. Note

that, along each eligible path, line cards could be active,

sleeping, or off, and the corresponding ports could be active,

LPI, or off. Upon assigning a path to the server pair, all the

line cards and corresponding ports should become active. In

other words, we need to wake up the inactive line cards and

ports on the path, which requires extra power consumption.

Based on this reasoning, we set the weight of each link as

the additional power needed for the tail node on this link

to be active. In other words, for link l from a server (or a

switch) to switch sw, via line card lc and port p in sw, the

weight of l is w(l) = (PCLC
active −PCLC

lc )+(PC
port
active −PC

port
p ).

Algorithm 2: Server State Transition Algorithm

Input: server wakeup latency τserver
wakeup, local queue of

server S

Output: Server power state transition

1 if a task arrives at a server S then

2 if S is in sleep state then

3 S enters active state after τserver
wakeup;

4 end

5 else

6 task is put in the local queue of S;

7 end

8 end

9 if a task is finished executing at server S then

10 if local queue of S is empty then

11 S enters sleep state immediately;

12 end

13 end

Symbol Description

Qs Local queue size of server s

T server
s Local queue size threshold for server s

S All the servers in DCN

Sava All the available servers for executing tasks

Px,y Routing path between node x and y in DCN

PC
port
p Power consumption of an arbitrary port p

PCLC
lc Power consumption of an arbitrary line card LC

PCLC
active Power consumption of an active line card

PC
port
active Power consumption of an active port

Table V: Notations in PopCorns Cooperative Network-Server
(CNS) algorithm.

Based on Table II, PCLC
active = 273.92W, PC

port
active = 1.21W,

PCLC
lc = 127.52W if lc is in sleep state, PCLC

lc = 0 if lc is in

off state, PC
port
p = 1.01W if p is in LPI state, and PC

port
p =

0 if p is in off state. For a link from a switch to a server,

the weight is obviously 0. After assigning link weights as

described, the CNS algorithm finds the shortest path Px,y for

every pair of servers (x,y) in Sava. Then, it selects the server

pair that has the minimum shortest path length, and assigns

it to the task pair.

V. EVALUATION

A. Experimental Setup

Our experiments are performed using an event-driven

simulator [20], [24]. We simulate a data center cluster with

16 servers and 20 switches. The network is configured

using a fat tree-topology as shown in Figure 2. We simulate

three classes of real applications: web service (small-sized

workload), web search (medium-sized workload), and DNS

service (large-sized workload). For each of the representative

workloads, we generate synthetic job arrivals with different

utilization levels (10% for low, 30% for average, and 60%



Algorithm 3: Cooperative Network-Server Algorithm

Input: Qs, T server
s , line cards and ports power state,

task dependency within a job

Output: Job placement and corresponding routing path

1 while job j consisting of task set T j arrives do

2 for each pair of interdependent tasks (T
j

m,T
j

n ) in

T j do

3 select Sava from S;

4 for each pair of available servers (x,y) in Sava

do

5 compute shortest path Px,y for server pair

(x,y);
6 end

7 choose the least-weight path among all the Px,y,

together with its corresponding server pair for

task pair (T j
m,T

j
n );

8 end

9 end

(a) Task workflow for DNS resolution. (b) DAG of a DNS job.

Figure 5: DNS service communication patterns (left) and DAG
of DNS jobs (right). Each job consists of 4 tasks, and there are
interdependence and communication between task 1 and 2, 3, 4.

for high utilization [25]). Random job arrivals are modeled

by Poisson process. The communication patterns and the

DAG for the three workloads are illustrated in Figures 5, 6,

and 7. The switch and server powers under different sleep

states are based on Tables II and III. Besides, we set the

server wakeup latency as 1ms and local queue size threshold

T server
s (for Algorithm 2) as 10 (number of tasks). For the

traffic thresholds and latency values in Table IV, we set

Ts, Ta, and Tf as 10, 2, and 20 (in terms of the number

of pending flows) respectively; τLC
wakeup as 25µs, τ

port
wakeup as

18.5µs, τLC
o f f as 2s, τ

port
o f f as (2s+2ms), dLC

wakeup as 2ms, d
port
wakeup

as (2ms+2µs), d
port
LPI as 1µs, dLC

sleep as 1µs, and dLC
o f f as 2s.

B. Evaluation Methodology

There are two major objectives: first, to demonstrate

that the smart use of line card sleep state combined with

port LPI state (shown in Algorithm 1), does reduce power

consumption compared to no power management policy on

the switches; second, our proposed Cooperative Network-

Server Algorithm 3 can further save power, compared to

other job placement algorithms that do not consider network

(a) Task workflow for a web search
request.

(b) DAG of a web search job.

Figure 6: Web search communication patterns (left) and DAG of
a web search job (right). Task 1 is executed by the master server,
while tasks 2 - 6 are processed by different indexers, and master
server communicates with all the indexers.

(a) Task workflow for a web
service request.

(b) DAG of a web service job.

Figure 7: Web service communication patterns (left) and DAG of
a web service job (right). Task 1 is executed by application server,
while task 2 is assigned to database server.

and server status jointly. The baseline comparison policy in

our experiment is the Server-Balanced (SB) Algorithm for

task placement, which dispatches tasks uniformly to all the

servers (i.e., nth task allocated to server with index n%N),

but does include our proposed switch power management

(Algorithm 1). After tasks are scheduled on servers, the

Server-Balanced Algorithm uses single shortest path routing

(e.g., using Dijkstra’s algorithm) for interdependent task

communication in the network. Thus, as long as there is an

inactive line card or port on the routing path, it needs to be

woken up. Note that since tasks of the same job are placed on

adjacent servers, the communication between interdependent

tasks would mostly be within a pod (see Section II-D), which

involves only 2-4 hops. Therefore, this baseline algorithm

might already perform better than random job placement in

terms of DCN power consumption.

In our study, we break the power savings into two parts:

network and server power saving. We calculate the power

consumption of the network part with our network power

management policy shown in Algorithm 1, and compare

it with the case when all the line cards and ports are

kept active all the time. To study the effectiveness of joint

server-network power optimization, we set up two different

job placement configurations: PopCorns framework (shown

using the suffix of −CNS to denote PopCorns’ core Co-

operative Network-Server Algorithm) and Server-Balanced

Algorithm (shown using the suffix of −SB).

C. Evaluation Results

1) DNS Service: Figure 5a and Figure 5b show the task

workflow for DNS service and its corresponding job DAG.



In the simulation, we set the flow size to be 100MB and

the average job service time is randomly generated between

150ms and 200ms. Since our experiment is based on multi-

task job, we define the service time as average task size (e.g.,

75 - 100ms for a DNS task, based on job DAG), and the

system utilization rate is defined as service time∗task arrival

rate.

Figure 8a shows the power saving using the PopCorns

framework for the execution of 2000 DNS jobs, compared

to the baseline. In our experimental setup, if all the line

cards and ports remain active, the switch power is 398.76W.

We can see that for each configuration, the average power

of PopCorns is 235 - 293W, and, PopCorns is able to

achieve approximately 26 - 41% network power savings,

while the baseline policy also saves 16 - 39% network

power with smart use of both line card and port low-power

states, compared to no power management on line cards and

ports. Note that with increase in system utilization rates, the

average power consumption of switches decreases. This is

because larger system utilization means larger job arrival

rate. Then, task pairs arriving at almost the same time will

be assigned the same routing path, making the most of active

line cards, while causing longer sleeping or off periods for

the other line cards.

Additionally, we see that on the server side, PopCorns

consumes approximately 26 - 30% less power than the base-

line (Server-Balanced job scheduling). There is no power

saving on the servers for the latter algorithm, as all the

servers are kept active, and each consumes 92W. In this

sense, we can conclude that intelligently scheduling tasks

based on their interdependence and system status, together

with the use of server C6 package sleep state further saves

power.

Figure 8b, 8c, and 8d show the CDF of job latency

for DNS Service jobs. We can see that the 90th percentile

job latency is the best under low system utilization, and

gradually increases as utilization increases. WASP [20]

shows that low system utilization is a more practical case

in real scenarios. Thus, we note that our proposed power

management policy together with job placement algorithm

saves a large portion of power in DCN while maintaining

the QoS demands (especially under low system utilization).

2) Web Search: Figure 6 shows the task workflow for a

web search request and its corresponding job DAG. In the

simulation, we set the flow size to be 100MB, and average

job service time is randomly generated between 20ms and

60ms. Thus, the average web search task size is 10 - 30ms

in our job model.

Figure 9a shows the power saving corresponding to the

execution of 2000 DNS jobs, compared to the baseline.

We can see that for each configuration, PopCorns is able

to achieve about 60% network power savings under high

system utilization, and even with low utilization, about 23%

network power savings is achieved. In contrast, the baseline

Server-Balanced job scheduling shows 46% and 23% power

saving respectively, which demonstrates the benefits of smart

use of low power states of switch components.

On the server side, PopCorns further saves approximately

18% power than the baseline, which has no power saving

on the servers. The results are basically in accordance with

the previous experiment.

Figures 9b, 9c, and 9d show the CDF of job latency in the

Web Search experiment. We can see that the 90th percentile

job latency is also the best under low system utilization, and

gradually increases with utilization rate getting higher.

3) Web Service: Figure 7 shows the task workflow for

a web service job and its corresponding DAG. In our

simulations, we set the flow size to be 100MB, and average

job service time is randomly generated between 2ms and

10ms. Therefore, the average web service task size is 1 -

5ms in our job model.

Figures 10 shows the power consumption for the ex-

ecution of 2000 web service jobs, which reinforces our

conclusions from prior experiments. We can see that for

a DCN executing small-sized jobs like web service, smart

use of server sleep states saves about 30% power compared

to keeping servers active all the time. We observe about

23% network power saving under various system utilization

levels. Additionally, compared to DNS and web search jobs,

we can see that our framework achieves even higher power

savings for larger-sized workloads.

VI. RELATED WORK

With the energy consumption of large data centers reach-

ing Gigawatt scales, its energy saving techniques are in-

creasingly being studied in recent years. Common tech-

niques used for server energy reduction include DVFS to

reduce the energy at the cost of server performance [26],

co-ordinated DVFS and sleep states for server proces-

sors [27] [20] [21], and virtualization to consolidate VMs

into fewer servers [28]. TS-Bat [27] demonstrates that,

through temporally batching the jobs and by grouping them

onto specific servers spatially, higher power savings can be

obtained. WASP [20] shows that intelligent use of low power

states in servers can be used to boost server power savings.

For the energy efficiency in the network, earlier works

have looked at switches and routers for Internet-scale large

area networking. Gupta et al. [5] first proposed the need

for power saving in networks and pointed to having net-

work protocol support for energy management. Adaptive

Link Rate (ALR) [6] reduces link energy consumption by

dynamically adjusting data link rates depending on traffic

requirements. Other approaches include turning off switches

when not required, or to put them in sleep mode depending

on packet queue length [29] [30]. Prior works on reduc-

ing data center network power rely on DVFS and sleep

states [15] to opportunistically reduce power consumption

of individual switches. In these approaches, switches may
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Figure 8: Average power and latency for 2000 Poisson-arrival DNS jobs under low, medium, and high system utilizations, respectively.
Suffix −CNS represents PopCorns framework and −SB denotes baseline Server-Balanced job scheduling algorithm.
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Figure 9: Average power and latency for 2000 Poisson-arrival web search jobs under low, medium, and high system utilization respectively.
Suffix −CNS represents PopCorns framework and −SB denotes baseline Server-Balanced job scheduling algorithm.
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Figure 10: Average power and latency for 2000 Poisson-arrival web service jobs under low, medium, and high system utilization respectively.
Suffix −CNS represents PopCorns framework and −SB denotes baseline Server-Balanced job scheduling algorithm.

enter sleep states without knowledge of incoming server

traffic and may be forced to wake up prematurely. Hence, a

server job placement and network allocation co-ordination

approach is required to optimize the amount of sleep time

in saving network energy consumption.

There are existing works that combine server and network

power savings. Mahadevan et al. [31] and Heller et al. [32]

have proposed a heuristic algorithm for a coarse-grained load

variation approach which dynamically allocates the servers

required for the workload and powers off the unneeded

switches for the server configuration. Other approaches

consolidate VMs in fewer servers and in turn use fewer

switches [33]. These approaches assume an unrealistically

high amount of idle period to be able to completely turn

off the servers and network components. To the best of our

knowledge, our solution is the only one to consider network

sleep states to target higher power savings in the data center.

VII. CONCLUSION

In this paper, we presented PopCorns, that makes smart

use of low power states in line cards and ports of network

switches. We combine them with network-aware task place-

ment for more effective power management. Our experimen-

tal results show that smart management of low-power states

achieves up to 40% power reduction over always active

switches, and smart joint placement and routing saves up to

60% power while keeping the job latency reasonably low.
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