
Covert Timing Channels Exploiting Non-Uniform Memory
Access based Architectures

Fan Yao, Guru Venkataramani and Miloš Doroslovački
Department of Electrical and Computer Engineering

The George Washington University, Washington, DC, USA
{albertyao, guruv, doroslov}@gwu.edu

ABSTRACT
Covert timing channels are a class of information leakage
attacks where two processes, namely the trojan and spy, col-
lude with intent to stealthily exfiltrate privileged informa-
tion even when the underlying system security policy pro-
hibits any direct communication between the two processes.
In this paper, we present a new type of covert timing chan-
nel that exploits the access timing difference between various
caches in Non-Uniform Memory Access (NUMA)-based ar-
chitectures, especially multi-socket CPUs. We demonstrate
a realistic covert timing channel implemented on a dual-
socket Intel Xeon server. We then explore use of statistical
analysis techniques to characterize and quantify the pres-
ence of covert timing channel activity. Our experimental
results show that such quantification techniques could be a
useful first step in formulating an effective defense against
NUMA-based covert timing channels.

1. INTRODUCTION
Computer security attacks, especially those that leak sen-

sitive data, are a fast growing concern in our everyday lives.
Covert channels are a class of information leakage attacks
where two colluding processes, namely the trojan and the
spy, intentionally subvert the underlying system security
policy to exfiltrate privileged information. Compared to side
channels in which the activities of an unsuspecting victim
process are monitored stealthily by a spy, covert channels
operate through an insider trojan process that communi-
cates the secrets to the spy even when the underlying sys-
tem policy prohibits such interaction [5]. Covert channels
are usually classified into two broad categories: storage-
based (that hide secrets within legitimately communicated
data) and timing-based (that simply manipulate the timing
of access to certain hardware or software resources). Among
these covert channel implementations, timing-based attacks
are notoriously hard to detect since they do not leave any
physical trace of an attack for inspection and forensic anal-
ysis [18].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GLSVLSI ’17, May 10-12, 2017, Banff, AB, Canada
c© 2017 ACM. ISBN 978-1-4503-4972-7/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3060403.3060417

With rapid improvements in software confinement and iso-
lation mechanisms, it is becoming increasingly difficult for
covert timing channels to exploit software resources. Nat-
urally, malicious attackers are turning to exploit hardware.
The multi-core processors, that have multitude of shared
hardware resources (e.g., caches, interconnect and functional
units), offer rich space for such exploits. Note that these
multi-core processors dominate the entire computing land-
scape today ranging from mobile phones to cloud computing.
Therefore, it becomes critical to understand how malicious
attackers exploit such shared resources, and devise strategies
to neutralize such efforts by the adversary.

Recently, there have been a growing number of studies
on hardware covert timing channel attacks that manipulate
the access timing on caches [15, 23, 14], functional units
such as integer multipliers [19], processor-memory bus [22]
and branch predictors [7]. In all of these attacks, the trojan
creates contention on a particular shared resource by creat-
ing a certain number of events, and lets the spy observe the
altered access timing on that resource, and infer the trans-
mitted bit.

In this paper, we investigate and present a new type of
hardware vulnerability to covert timing channels exposed by
the difference in access timing across multiple levels of the
cache hierarchy in Non-Uniform Memory Access (NUMA)-
based architectures. We implement a realistic covert timing
channel based on this vulnerability, and demonstrate the
attack on a dual-socket Intel Xeon server where the trojan
modulates the cache access timing by locating itself on a
socket different from the spy. We then explore statistical
techniques to characterize and quantify the possible pres-
ence of covert timing channel activity. We utilize Degree of
Sparseness [13] to quantify and analyze the pattern of time
intervals for inter-socket cache data transfers when observed
during covert channel activity and regular application exe-
cution (with no known covert information leakage channels).
We note that developing such quantification techniques will
be a useful first step in mounting successful defense against
such timing channels.

The contributions of our paper are:
1. We present a new hardware-based covert timing chan-

nel implementation where the trojan, in order to communi-
cate the secrets to the spy, exploits the timing differences in
cache read accesses exposed by NUMA-based architectures.

2. We demonstrate the viability of our new covert timing
channel on a real system testbed using Intel Xeon X5650
dual-socket processors.

3. We explore statistical methods to quantify NUMA-based

http://dx.doi.org/10.1145/3060403.3060417

Last Level Cache

On-chip Interconnect

Local Cache

core
 1

Processor Socket #2

Local Cache

core
 2

Last Level Cache

Local Cache

core
 1

Processor Socket #1

Local Cache

core
 2

O
ff-chip Interconnection

On-chip Interconnect

Figure 1: Local and remote cache accesses in NUMA system.

0 100 200 300 400 500 600
Latency (Cycles)

0%

20%

40%

60%

80%

100%

CD
F

Local Access (L1)
Remote Access (Inter-socket)

Figure 2: Cumulative Distribution Function for local (Level
1) and remote/cross-socket (Last Level) cache access latency

covert timing channel activity, that can eventually help guide
defense strategies against such channels.

2. BACKGROUND
The memory hierarchy in recent processors includes sev-

eral levels of caches and DRAM, some that are used privately
by the individual cores and some that are shared between
multiple cores. Also, with the use of multi-socket CPUs com-
municating via high speed interconnect (e.g., Quick Path In-
terconnect (QPI) in Intel architectures [2] and HyperTrans-
port links in AMD architectures [6]), processor cores can
now share cache contents across processors with coherence
protocols running between them. Due to these hierarchi-
cal memory levels, there is usually a shorter latency period
for read/write requests satisfied by a cache situated locally
within the processor (local socket) when compared to mem-
ory requests that are satisfied by a cache belonging to a
different processor (cross-socket or inter-socket). An un-
intended side-effect of these timing differences in NUMA-
based machines is that, a malicious hacker can exploit such
timing variations to force data to be placed in different
caches, and ultimately implement covert timing channels.
Figure 1 illustrates the difference between cache accesses
that are satisfied locally within the same socket (local cache
hit– shown using a dotted line) versus those that are satis-
fied by the remote cache (cache hit in another socket– shown
using a dashed line).

2.1 NUMA Latency
To understand the access latency variations in NUMA, we

perform experiments that read data from local and remote
processor caches in a multi-socket processor. For this study,
we use a dual-socket Intel Xeon X5650 server with 6 cores in
each socket running at 2.67 GHz frequency. Each processor
has a 32 KB private L1, 256 KB private L2 caches, 12 MB
shared L3 cache within each socket. All of the caches are

kept coherent in hardware. To model real system settings,
applications such as browser, dropbox, code editors are run
alongside our experiments.

We generate 1,000 memory read operations that target
caches in the local socket (specifically, L1 cache) and re-
mote socket (specifically, Last Level Cache or LLC in an-
other socket). To target local caches for reads, our test pro-
filer runs a tight loop with repeated reads that are satisfied
by the local L1 cache. To target remote LLC for reads, our
profiler issues periodic read requests. Meanwhile, a control
program, that is pinned to a socket different from where
the test profiler resides, explicitly issues a flush operation
(using x86 ISA-supported instructions such as clflush that
clears the block from all caches) and then loads the block
into corresponding socket’s cache hierarchy (that includes
its LLC). When the test profiler issues its read access to the
cache block, this block is guaranteed to be routed to the
remote socket where the control program is located. All of
the cache accesses and the associated instructions are timed
using rdtsc instruction. Figure 2 shows the Cumulative Dis-
tribution Function (CDF) for cache access latencies from
local and remote sockets. As we can see, the cache accesses
to local and remote caches show distinct bands of latency
distributions. This shows the viability for exploiting the la-
tency difference between caches in different sockets.

3. THREAT MODEL
In our covert timing channel, we assume that the tro-

jan and spy are running on the same machine that features
two or more multi-core processors. The trojan intention-
ally modulates the cache access timing through issuing a
flush operation, and later places a data block in its local
cache so that the spy can infer the covertly transmitted in-
formation. We assume that a compromised trojan, that has
sufficient privileges to access sensitive data, is able to run
inside the target multi-socket CPU. Our attack model fits
into flush+reload category of attacks [26], where the trojan
clears its memory blocks and reloads them to alter the access
times.

As confinement mechanisms continue to offer stronger iso-
lation between software applications, hardware structures
will become natural targets for covert timing channels. In
this vein, we illustrate the vulnerabilities exposed by NUMA-
based architectures (specifically, multi-socket CPU systems)
that provide for timing difference in cache accesses depend-
ing on the caches that satisfy the memory requests.

4. NUMA-BASED TIMING CHANNELS
In this section, we demonstrate a covert timing channel

implementation that exploits the cache access timing differ-
ences in NUMA. The trojan and the spy are two separate
physical processes with the trojan having higher privileges
than the spy in terms of access to sensitive secrets such as
Operating System- or user-related data. In order to suffi-
ciently modulate the timing of cache accesses, the trojan
process is run in a socket different from the spy.

Figure 3 illustrates the communication protocol between
the trojan and the spy for bit transmission. The spy is-
sues the load or read instructions periodically to a mem-
ory address that is known (and accessible) to both the tro-
jan and spy. Typically, this memory address points to a
shared code region such as a library function shared between

Trojan

 Spy

Timed
Load

bit ‘1’ transmitted bit ‘0’ transmitted

Local Hit Local Hit Local Hit Local Hit

Flush Load

Socket A

Socket B

Remote Hit Remote Hit Remote Hit Remote Hit

c1

c2

c1

c2
Flush Load Flush Load Flush Load

Timed
Load

Timed
Load

Timed
Load

Timed
Load

Timed
Load

Timed
Load

Timed
Load

bit ‘1’ inferred bit ‘0’ inferred

FlushLoad

Timed
Load

Flush Load

Timed
Load

Time

Time

Remote Hit Remote Hit

Figure 3: Illustration of the communication protocol between the spy and trojan showing a transmission of bit sequence ’10’.

processes [26]. There are two possibilities in NUMA-based
CPUs when load operations are issued by the spy: 1. the
load hits in the local L1 cache or LLC of the spy’s socket,
2. the load misses in the cache hierarchy of the spy’s socket,
and the requested memory address is resident in the remote
socket or DRAM. Our experiments show two distinct bands
of latencies for the above two possibilities (Figure 2). The
spy times these loads to infer whether the loads resulted in a
local cache hit or a remote cache hit. If the loads are satisfied
by the DRAM (i.e., neither socket’s cache can satisfy), the
spy observes a longer latency compared to remote cache hit
and ignores them.

The trojan manipulates the access timing to the shared
memory address to communicate the bits covertly to the
spy. Whenever the trojan wants to communicate a bit, it
performs a cache flush operation using instructions such as
clflush. This clears the target memory address from all of
the caches that are kept coherent in the multi-socket CPU,
including that of the spy located in another socket. The tro-
jan, then immediately, performs a load from that memory
location. This populates the shared memory address data
in the cache hierarchy of the trojan’s socket (i.e., the cor-
responding L1 cache and LLC). When the spy performs its
periodic load from this memory address, the spy’s cache can-
not service this load since the corresponding contents have
been previously flushed by the trojan. Effectively, this en-
ables the spy to detect the timing difference in cache access
compared to its local cache hit.

Now that, we have seen how the trojan manipulates the
timing of cache access for the spy, it is important to un-
derstand how the transmission of ‘1’ and ‘0’ bits can be
accomplished. In our current implementation, this is done
through trojan performing a specific number of consecutive
flush+reload operations to be observed by the spy. In our
current design, for transmitting a ‘1’, the trojan performs
four consecutive flush+reload; and for transmitting a ‘0’, the
trojan performs two consecutive flush+reload operations.
The spy infers the end of bit transmission when it observes
its load operation result in a local cache hit (via timing the
load), i.e., the trojan has not performed flush+reload on the
memory block.

Finally, we note that our implementation does not have
explicit synchronization between the trojan and the spy.
Based on our experimental measurements, a flush+reload
operation by the trojan took 350 cycles. To allow for suffi-
cient time, the spy performs its periodic timed load accesses

�� ��� ��� ���

�
�� �
�
�
��
�

������������

1

0

-

-

Figure 4: Bit pattern (64 bits) transmitted by the trojan.

every 1,000 cycles. This minimizes the possibility of the spy
missing the trojan’s transmitted bit. We note that, in order
to further improve the reliability of transmission while max-
imizing the effective bit rate of covert channel, the spy could
reduce the time interval between its load requests, and the
trojan could utilize one or more of the following features:
1. add parity bits, 2. packetize the transmission and include
packet headers containing metadata, 3. synchronize using
existing system features such as CPU clock.

5. TIMING CHANNEL DEMONSTRATION
Using the Linux system call sched setaffinity, the spy and

the trojan thread are pinned to two different sockets of Intel
Xeon X5650 server. To create shared memory pages, we
programmed the trojan and spy to load a shared page from
the libgcrypt library [1], a widely used Linux cryptography
library.

The spy runs a while loop with timed loads to a cache
block in the shared libgcrypt library. Figure 4 shows a ran-
dom 64 bits that are transmitted from the trojan. Corre-
spondingly, Figure 5 shows the sequence of latencies mea-
sured using timed load by the spy. As we can see, there are
several consecutive tall bars (corresponding to remote cache
hits) fenced by consecutive short bars (corresponding to local
cache hits). The spy deciphers the bit based on the number
of consecutive tall bars (see Section 4). In our experiments,
the spy observes 1-2 tall bars during ‘0’ transmission, and
3-4 tall bars during ‘1’ transmission. This small variance
stems from tail latencies in remote cache latency distribu-
tion and the background noise from other processes. Despite
this minor variation, the spy could still correctly distinguish
between ‘1’ and ‘0’ with 100% accuracy. Overall, the trans-
mission achieves an effective bit rate of 190 Kbit/sec. Note
that it is possible to further improve the speed through ad-

��

����

����

����

�� ��� ���� ���� ���� ���� ����

�
�
�
�

�
�
�
��
�
�
�
�

��
�
�
��
�
�

���������������

Figure 5: Latency sequence for load operations measured by the spy. The (taller) red bar and (shorter) purple bars correspond
to remote cache and local cache hits respectively.

ditional optimizations to the trojan and spy described in
Section 4.

6. TIMING CHANNEL ANALYSIS
To prepare for an effective defense, we first attempt to

characterize the NUMA-based timing channels. We envi-
sion that any detection strategy would need to monitor the
activities of multiple NUMA components, and capture the
interactions between individual components (e.g., cache miss
requests and data transfers). Through analyzing the activity
of cache hierarchy during covert transmission, we made an
important observation: The time-interval between two con-
secutive remote cache accesses (i.e., time-interval between
inter-socket cache data transfers) exhibits a concentrated dis-
tribution in the case of a covert channel attack compared
to regular applications with legitimate communication. The
concentration is due to the fact that the spy relies on ob-
serving a consecutive number of remote load accesses in or-
der to infer the transmitted bits. As such, the spy issues
a number of load operations at a pre-determined sampling
interval that can be observed over the interconnect. Our
experiments show that covert channels have only a few pos-
sible values for time-intervals between remote cache accesses
(see Section 6.1 for details). We note that it is conceiv-
able for a spy to change the sampling interval at runtime
to evade from being noticed. However, in asynchronous en-
vironments, the spy may begin to see a rapid rise in bit
error rate due to lack of synchronization. On the contrary,
for regular applications that do not intentionally manipu-
late the timing between inter-socket data transfers, a higher
level of randomness is expected in time between inter-socket
cache transfers, which is verified through our experiments.

6.1 Time-Intervals between Remote Accesses
Since real hardware does not support measuring the time-

intervals between remote cache accesses, we setup Gem5 [4],
a cycle-accurate, full system simulator to perform our mea-
surements. We configure Gem5 with eight x86 cores, and use
a minimal Linux distribution with kernel version 2.6.32. We
build Parsec-2.1 benchmarks [3] with 8 threads, where each
thread is pinned to a separate core. We also configure the
spy and trojan to run on Gem5, where we record the times-
tamps for inter-core cache data transfers. Since any core
pair can be used in a covert channel attack, the monitor fil-
ters the timestamps associated with cache data transfers for
each source-destination core pair. We generate histograms
for time-intervals between inter-socket cache accesses.

As expected, our experiments in Figure 6 show that reg-
ular (Parsec-2.1) benchmarks exhibit higher randomness in

time-intervals. We show results for a representative core in
each benchmark. Also, we eliminate time-intervals greater
than 5,000 cycles since they represent lengthy idle periods
without inter-core cache transfers, and collectively consti-
tute less than 0.5% of the population. We observe that,
though some time interval bins are more favored than other
bins (i.e., higher probability), the probability of any single
bin does not exceed 25% and the expected probability in
almost all of the bins are non-trivial. In contrast, for covert
channel scenario (Figure 7), the time-interval distribution is
highly concentrated and is non-zero only for a very few bins.
Notably, the bins between 1,500 and 2,000 cycles correspond
to bit transmission phases when more frequent remote cache
accesses are observed, and the bins between 4,300 and 5,000
cycles correspond to idle phases when time interval between
remote cache accesses are long. We note that, though the
absolute locations of the histogram bins corresponding to bit
transmission and idle phases may change, the characteristic
of concentration in certain bins over others would remain,
as they are inherently needed to covertly communicate bits
between the trojan and the spy.

6.2 Quantifying NUMA Covert Channels
From Section 6.1, we see that the time-interval histograms

for regular applications and covert channels are significantly
different. Specifically, the time-interval distribution in covert
channel is highly concentrated within a small number of bins
to improve bit inference accuracy for the spy. In other words,
the highly probable bins are sparse for covert channels com-
pared to regular applications. Therefore, we use the metric
Degree of Sparseness (S) [13] to capture this phenomenon.
An S value of 1 denotes that the distribution is very sparse,
and a value of 0 means that the distribution is not sparse
(i.e., uniform). Given the probability vector for the his-
togram bins as P, Degree of Sparseness (S) is defined as:

S =
M

M −
√
M

(1−
‖P‖1√

M × ‖P‖2
) (1)

where M equals to the number of histogram bins, and ‖P‖1,
‖P‖2 are norm-1 and norm-2 for vector P respectively. It
is worth noting that there are a number of histogram bins
in regular applications which have near-zero probabilities.
Since S depends on the absolute probability values, the his-
togram bins with near-zero probabilities may be outweighed.
To account for such bins and amplify their influence during
computation of S, we pre-process the probability values with
the µ-law compression function [16] to get a new vector Q:

Qi =
log (1 + µPi)

log (1 + µ)
(2)

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%
Pr

ob
ab

ili
ty

(a) Bodytrack

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(b) Dedup

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(c) Fluidanimate

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(d) StreamCluster

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(e) Swaptions

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

Pr
ob

ab
ili

ty

(f) x264

Figure 6: Histograms of time-intervals between remote cache accesses in Parsec-2.1 benchmarks for representative cores.

0 1000 2000 3000 4000 5000
Time Interval between Remote Accesses (Cycles)

0%

10%

20%

30%

40%

50%

60%

Pr
ob

ab
ili

ty

Figure 7: Histogram of time-intervals between remote cache
accesses in the covert channel.

where µ is a tunable parameter that controls the degree
of compression for large values while increasing the level
of amplification for small values. We set µ = 500 in our
experiments.

We compute values of S on our histograms for time-intervals
for remote cache accesses. Figure 8 shows the Sparseness
measurement for each of the (source, destination) core pairs
for six Parsec-2.1 benchmarks. We observe the S values to
be less than 0.4 in all regular benchmarks. On the other
hand, S value is very high, and around 0.8 for covert chan-
nels (which is at least 2× compared to regular applications).
This proves that our quantification technique can indeed be
applied as an effective indicator for the possible presence of
NUMA-based covert timing channels.

7. RELATED WORK
Several prior works have studied hardware-based side- and

covert channels [26, 23, 11, 24, 10]. Recently, Irazoqui et
al. [9] demonstrate a side channel implementation that takes
advantage of the cache access timing difference exposed by
the high speed point-to-point interconnect between proces-
sors compared to DRAM accesses. This attack manipulates
accesses to the remote cache and DRAM. Different from this

attack, our paper demonstrates an attack that exploits lo-
cal/remote cache access latency differences.

Architecture support for safeguarding computer systems
from information leakage attacks have been widely stud-
ied [20, 25]. Venkataramani et al. [18] study how to de-
tect contention-based covert timing channels through dy-
namically tracking conflict patterns on shared hardware re-
sources. Liu et al. [12] propose a cache design that provides
dynamic and randomized memory-to-cache mapping to miti-
gate contention based side channels. Gu et al. [8] have shown
the potential of leveraging the merging 3D die-stacking tech-
niques for secure system design. Hardware-based side chan-
nel resistant S-Box designs for the AES crypto-systems are
studied in prior works [17, 21]. Such techniques can help
detect and mitigate information leakage channels, and work
synergistically with our detection mechanism to improve the
overall system security.

8. CONCLUSIONS
In this paper, we presented a new type of covert timing

channel that exploits the cache access timing difference in
NUMA-based architectures. Unlike most prior timing chan-
nel attacks that exploit a single cache, the proposed attack
manipulates different levels of caches across multiple sock-
ets. We implemented a realistic covert timing channel on a
dual-socket Intel Xeon CPU. We explored statistical analy-
sis techniques to characterize and quantify the presence of
covert timing channel activity using Degree of Sparseness for
inter-socket cache data transfers. Our experimental results
showed that such quantification techniques can sufficiently
distinguish covert timing channel activity from regular ap-
plications, and ultimately help design defense mechanisms.

9. ACKNOWLEDGMENTS
This material is based on work supported by the US Na-

tional Science Foundation under CAREER Award CCF-
1149557 and CNS-1618786, and Semiconductor Research Corp.
(SRC) contract 2016-TS-2684. Any opinions, findings, con-

 0

 0.2

 0.4

 0.6

 0.8

 1

(0
,1

)
(0

,2
)

(0
,3

)
(0

,4
)

(0
,5

)
(0

,6
)

(0
,7

)
(1

,2
)

(1
,3

)
(1

,4
)

(1
,5

)
(1

,6
)

(1
,7

)
(2

,3
)

(2
,4

)
(2

,5
)

(2
,6

)
(2

,7
)

(3
,4

)
(3

,5
)

(3
,6

)
(3

,7
)

(4
,5

)
(4

,6
)

(4
,7

)
(5

,6
)

(5
,7

)
(6

,7
)

D
e
g
re

e
 o

f
S

p
a
rs

e
n
e
ss

(Source Core, Destination Core) Pair

(a) Bodytrack

 0

 0.2

 0.4

 0.6

 0.8

 1

(0
,1

)
(0

,2
)

(0
,3

)
(0

,4
)

(0
,5

)
(0

,6
)

(0
,7

)
(1

,2
)

(1
,3

)
(1

,4
)

(1
,5

)
(1

,6
)

(1
,7

)
(2

,3
)

(2
,4

)
(2

,5
)

(2
,6

)
(2

,7
)

(3
,4

)
(3

,5
)

(3
,6

)
(3

,7
)

(4
,5

)
(4

,6
)

(4
,7

)
(5

,6
)

(5
,7

)
(6

,7
)

D
e
g
re

e
 o

f
S

p
a
rs

e
n
e
ss

(Source Core, Destination Core) Pair

(b) Dedup

 0

 0.2

 0.4

 0.6

 0.8

 1

(0
,1

)
(0

,2
)

(0
,3

)
(0

,4
)

(0
,5

)
(0

,6
)

(0
,7

)
(1

,2
)

(1
,3

)
(1

,4
)

(1
,5

)
(1

,6
)

(1
,7

)
(2

,3
)

(2
,4

)
(2

,5
)

(2
,6

)
(2

,7
)

(3
,4

)
(3

,5
)

(3
,6

)
(3

,7
)

(4
,5

)
(4

,6
)

(4
,7

)
(5

,6
)

(5
,7

)
(6

,7
)

D
e
g
re

e
 o

f
S

p
a
rs

e
n
e
ss

(Source Core, Destination Core) Pair

(c) Fluidanimate

 0

 0.2

 0.4

 0.6

 0.8

 1

(0
,1

)
(0

,2
)

(0
,3

)
(0

,4
)

(0
,5

)
(0

,6
)

(0
,7

)
(1

,2
)

(1
,3

)
(1

,4
)

(1
,5

)
(1

,6
)

(1
,7

)
(2

,3
)

(2
,4

)
(2

,5
)

(2
,6

)
(2

,7
)

(3
,4

)
(3

,5
)

(3
,6

)
(3

,7
)

(4
,5

)
(4

,6
)

(4
,7

)
(5

,6
)

(5
,7

)
(6

,7
)

D
e
g
re

e
 o

f
S

p
a
rs

e
n
e
ss

(Source Core, Destination Core) Pair

(d) Streamcluster

 0

 0.2

 0.4

 0.6

 0.8

 1

(0
,1

)
(0

,2
)

(0
,3

)
(0

,4
)

(0
,5

)
(0

,6
)

(0
,7

)
(1

,2
)

(1
,3

)
(1

,4
)

(1
,5

)
(1

,6
)

(1
,7

)
(2

,3
)

(2
,4

)
(2

,5
)

(2
,6

)
(2

,7
)

(3
,4

)
(3

,5
)

(3
,6

)
(3

,7
)

(4
,5

)
(4

,6
)

(4
,7

)
(5

,6
)

(5
,7

)
(6

,7
)

D
e
g
re

e
 o

f
S

p
a
rs

e
n
e
ss

(Source Core, Destination Core) Pair

(e) Swaptions

 0

 0.2

 0.4

 0.6

 0.8

 1

(0
,1

)
(0

,2
)

(0
,3

)
(0

,4
)

(0
,5

)
(0

,6
)

(0
,7

)
(1

,2
)

(1
,3

)
(1

,4
)

(1
,5

)
(1

,6
)

(1
,7

)
(2

,3
)

(2
,4

)
(2

,5
)

(2
,6

)
(2

,7
)

(3
,4

)
(3

,5
)

(3
,6

)
(3

,7
)

(4
,5

)
(4

,6
)

(4
,7

)
(5

,6
)

(5
,7

)
(6

,7
)

D
e
g
re

e
 o

f
S

p
a
rs

e
n
e
ss

(Source Core, Destination Core) Pair

(f) x264

Figure 8: Degree of Sparseness for (Source, Destination) pairs for the Parsec-2.1 Benchmarks.

clusions, or recommendations expressed in this article are
those of the authors, and do not necessarily reflect those of
the NSF or SRC.

10. REFERENCES
[1] Libgcrypt project. https://www.gnu.org/software/libgcrypt/.

[2] Intel QuickPath Architecture, 2012. http://www.intel.com/
pressroom/archive/reference/whitepaper QuickPath.pdf.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmark suite: Characterization and architectural
implications. In Proceedings of the 17th International
Conference on Parallel Architectures and Compilation
Techniques, pages 72–81. ACM, 2008.

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
et al. The gem5 simulator. ACM SIGARCH Computer
Architecture News, 39(2):1–7, 2011.

[5] J. Chen and G. Venkataramani. Cc-hunter: Uncovering covert
timing channels on shared processor hardware. In 47th Annual
International Symposium on Microarchitecture (MICRO).
IEEE, 2014.

[6] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and
B. Hughes. Cache hierarchy and memory subsystem of the
AMD Opteron processor. IEEE micro, 30(2):16–29, 2010.

[7] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh.
Understanding and mitigating covert channels through branch
predictors. ACM Transactions on Architecture and Code
Optimization, 13(1):10, 2016.

[8] P. Gu, S. Li, D. Stow, R. Barnes, L. Liu, Y. Xie, and
E. Kursun. Leveraging 3D technologies for hardware security:
Opportunities and challenges. In Proceedings of the 26th
edition of the Great Lakes Symposium on VLSI, pages
347–352. ACM, 2016.

[9] G. Irazoqui, T. Eisenbarth, and B. Sunar. Cross processor
cache attacks. In Proceedings of the 11th Asia Conference on
Computer and Communications Security, pages 353–364.
ACM, 2016.

[10] Z. H. Jiang, Y. Fei, and D. Kaeli. A complete key recovery
timing attack on a GPU. In Proceedings of the 22nd
International Symposium on High Performance Computer
Architecture, pages 394–405. IEEE, 2016.

[11] J. Lee, M. Tehranipoor, C. Patel, and J. Plusquellic. Securing
designs against scan-based side-channel attacks. IEEE
Transactions on Dependable and Secure Computing,
4(4):325–336, 2007.

[12] F. Liu, H. Wu, K. Mai, and R. B. Lee. Newcache: Secure cache
architecture thwarting cache side-channel attacks. IEEE Micro,
36(5):8–16, 2016.

[13] P. Loganathan, A. W. Khong, and P. A. Naylor. A class of
sparseness-controlled algorithms for echo cancellation. IEEE

Transactions on Audio, Speech, and Language Processing,
17(8):1591–1601, 2009.

[14] D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and
countermeasures: the case of AES. In Proceedings of the
Cryptographers’ Track at the RSA Conference, pages 1–20.
Springer, 2006.

[15] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,
you, get off of my cloud: exploring information leakage in
third-party compute clouds. In Proceedings of the 16th
Conference on Computer and Communications Security,
pages 199–212. ACM, 2009.

[16] K. Sayood. Introduction to data compression. Newnes, 2012.

[17] C. Teegarden, M. Bhargava, and K. Mai. Side-channel attack
resistant rom-based aes s-box. In Proceedings of the
International Symposium on Hardware-Oriented Security and
Trust, pages 124–129. IEEE, 2010.

[18] G. Venkataramani, J. Chen, and M. Doroslovacki. Detecting
hardware covert timing channels. IEEE Micro, 36(5):17–27,
2016.

[19] Z. Wang and R. B. Lee. Covert and side channels due to
processor architecture. In Proceedings of the 22nd Annual
Computer Security Applications Conference, pages 473–482.
IEEE, 2006.

[20] Z. Wang and R. B. Lee. New cache designs for thwarting
software cache-based side channel attacks. In ACM SIGARCH
Computer Architecture News, volume 35, pages 494–505.
ACM, 2007.

[21] J. Wu, Y.-B. Kim, and M. Choi. Low-power side-channel
attack-resistant asynchronous s-box design for aes
cryptosystems. In Proceedings of the 20th edition of the Great
Lakes Symposium on VLSI, pages 459–464. ACM, 2010.

[22] Z. Wu, Z. Xu, and H. Wang. Whispers in the hyper-space:
high-speed covert channel attacks in the cloud. In USENIX
Security 12, 2012.

[23] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and
R. Schlichting. An exploration of l2 cache covert channels in
virtualized environments. In Proceedings of the 3rd Workshop
on Cloud Computing Security Workshop, pages 29–40. ACM,
2011.

[24] B. Yang, K. Wu, and R. Karri. Scan based side channel attack
on dedicated hardware implementations of data encryption
standard. In Proceedings of the International Test Conference.
IEEE, 2004.

[25] F. Yao, J. Chen, and G. Venkataramani. Jop-alarm: Detecting
jump-oriented programming-based anomalies in applications. In
Proceedings of the 31st International Conference on
Computer Design, pages 467–470. IEEE, 2013.

[26] Y. Yarom and K. Falkner. Flush+ reload: a high resolution, low
noise, L3 cache side-channel attack. In USENIX Security, 2014.

https://www.gnu.org/software/libgcrypt/
http://www.intel.com/pressroom/archive/reference/whitepaper_QuickPath.pdf
http://www.intel.com/pressroom/archive/reference/whitepaper_QuickPath.pdf

	Introduction
	Background
	NUMA Latency

	Threat Model
	NUMA-based Timing Channels
	Timing Channel Demonstration
	Timing Channel Analysis
	Time-Intervals between Remote Accesses
	Quantifying NUMA Covert Channels

	Related Work
	Conclusions
	Acknowledgments
	References

