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Microarchitecture Security
v Information security in hardware is a major concern.

§ Many microarchitectural components can be sources of leakage
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First investigation of information leakage 
vulnerabilities in Multi-level Cell PCM

This work



Background: MLC PCM

v PCM cells have wide range of resistance.
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Background: MLC PCM

v PCM cells have wide range of resistance.

v Single-level cell mode (SLC): Each cell stores one bit.

v Multi-level cell mode (MLC): Each cell stores two (or more) bits.
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Performance Optimizations for MLC-PCM Reads

v Decouple MSB bit reads from LSB bit reads.
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Performance Optimizations for MLC-PCM Reads

v Decouple MSB bit reads from LSB bit reads.

v Inter-line striping: Stripe alternating lines in different speed grades. 
§ MSB Lines: Memory lines containing all MSB bits (faster)
§ LSB Lines: Memory lines containing all LSB bits (slower)
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Cell1 Cell2 Cell3 Cell4 Cell511 Cell512Cell256 Cell257

MSB MSB MSB MSB MSB MSBMSB MSB

LSB LSB LSB LSB LSB LSBLSB LSB
… …MSB Line:
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Memory line 1
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Are PCM Read Techniques Vulnerable to Leakage?
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v Microbenchmark:
§ Issues fixed number of memory accesses
§ Varies MSB and LSB lines accesses

v Increasing LSB ratio -> Deterministic linear increase in execution time

Differentiation in PCM access patterns can induce 
externally observable slow and fast executions.



Overview of R-SAW: Exploiting Read Asymmetry
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AES Encryption in OpenSSL

v AES encryption uses pre-computed values from memory (t-tables).

v PCM access patterns to these t-tables are secret key dependent.

AES Encryption EnginePlaintext Ciphertext

Key

PCM Memory

T-tables
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Attacking AES with R-SAW: Offline Profiling
v Collects LSB/MSB access ratios (𝑷) of encryption for random plaintext (PT) and key.

v Organizes the 𝑷 based on last round key byte and ciphertext (CT) byte value pair.

v For each key byte value, MPV stores the 𝑷 corresponding to each CT byte value.
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Memory-pattern vector (MPV):

Last round key byte value, u LSB Access ratio when 
<key, ciphertext> = <u, 255>

Profile dataset: For each key byte, 256 MPVs corresponding to each value of u



Attacking AES with R-SAW: Runtime Monitoring
v Attacker monitors encryption times (𝑳) for AES encryptions (unknown key).

v Organizes the 𝑳 based ciphertext byte value.

v Attacker creates ETV by collecting 𝑳 for each ciphertext byte value.
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Attacking AES with R-SAW: Runtime Monitoring
v Attacker monitors encryption times (𝑳) for AES encryptions (unknown key).

v Organizes the 𝑳 based ciphertext byte value.

v Attacker creates ETV by collecting 𝑳 for each ciphertext byte value.
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Encryption-timing vector (ETV):

Key byte value, unknown Encryption time when 
<key, ciphertext> = <unknown, 255>

Attack data: One ETV for the key byte value, unknown



Attacking AES with R-SAW: Correlation Analysis
v Correlation analysis between attack data and profile dataset.
v Highest and outstanding correlation may indicate the unknown key value.
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Attacking AES with R-SAW: Evaluation of Attack
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Attacking AES with R-SAW: Evaluation of Attack

12
Complete 16-byte AES Key recovery using R-SAW

98.5% accuracy of recovering 100 keys.



More on paper
v Comparison of R-SAW with state-of-the-art cache-based attacks.

§ Resiliency of R-SAW against system noise
§ Feasibility of R-SAW with small number of attack samples

v Discussions on potential mitigations for R-SAW.
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Noise resiliencySample-size study
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