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Security needs to be understood by
design, instead of an afterthought.

Lessons from past:



Microarchitecture Security

This work

First investigation of information leakage
vulnerabilities in Multi-level Cell PCM




Background: MLC PCM

*¢* PCM cells have wide range of resistance.
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Background: MLC PCM

*¢* PCM cells have wide range of resistance.
+»* Single-level cell mode (SLC): Each cell stores one bit.

> Multi-level cell mode (MLC): Each cell stores two (or more) bits.
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Figure: 2-bit MLC PCM
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MLC PCM Read Techniques

Reference Resistance:
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MLC PCM Read Techniques
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MLC PCM Read Techniques

Reference Resistance: R _2 R3
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Performance Optimizations for MLC-PCM Reads

Cellq Celly Cellg Cellg Cellagg Cellog7 Cellgq1 Cellg12
MSB Line: MSB|MSB VBB Memory line 1
LSB Line: |LSB|[LSB||LSB|[LSB Memory line 2

¢ Decouple MSB bit reads from LSB bit reads.

¢ Inter-line striping: Stripe alternating lines in different speed grades.

= MSB Lines: Memory lines containing all MSB bits (faster)
= LSB Lines: Memory lines containing all LSB bits (slower)
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Are PCM Read Techniques Vulnerable to Leakage?

Differentiation in PCM access patterns can induce

externally observable slow and fast executions.

Execution Time
(Thousand Cycles)

0 20 40 60 80 100
Reads to LSB Line (%)

6



Overview of R-SAW: Exploiting Read Asymmetry
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Overview of R-SAW: Exploiting Read Asymmetry
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AES Encryption in OpenSSL

¢ AES encryption uses pre-computed values from memory (t-tables).

** PCM access patterns to these t-tables are secret key dependent.

Key
v
Plaintext —» AES Encryption Engine |— Ciphertext
T-tables —+ A A A
PCM Memory
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Attacking AES with R-SAW: Offline Profiling

+* Collects LSB/MSB access ratios (P) of encryption for random plaintext (PT) and key.

** Organizes the P based on last round key byte and ciphertext (CT) byte value pair.

** For each key byte value, MPV stores the P corresponding to each CT byte value.
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Attacking AES with R-SAW: Offline Profiling

+* Collects LSB/MSB access ratios (P) of encryption for random plaintext (PT) and key.

** Organizes the P based on last round key byte and ciphertext (CT) byte value pair.
** For each key byte value, MPV stores the P corresponding to each CT byte value.

P —y
Memory-pattern vector (MPV): _/\/l(u) — {F?u) ] Féu), ,IF?S?}
Moo

L k |
ast round key byte value, U LSB Access ratio when

<key, ciphertext> = <u, 255>

[Profile dataset: For each key byte, 256 MPVs corresponding to each value of U ]
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Attacking AES with R-SAW: Runtime Monitoring

s Attacker monitors encryption times (L) for AES encryptions (unknown key).
** Organizes the L based ciphertext byte value.

s Attacker creates ETV by collecting L for each ciphertext byte value.

Encryption-timing vector (ETV): T(X) — {Z(()x),fzx), ,Z?ii}

10



Attacking AES with R-SAW: Runtime Monitoring

s Attacker monitors encryption times (L) for AES encryptions (unknown key).

** Organizes the L based ciphertext byte value.

s Attacker creates ETV by collecting L for each ciphertext byte value.

Encryption-timing vector (ETV): T(X) — {Z(()X),fgx), . ?,5()3}

I I I S S S - - N I N N S S - -y,

Encryption time when I
| <key, ciphertext> = <unknown, 255> '

Key byte value, unknown 0

10



Attacking AES with R-SAW: Runtime Monitoring

s Attacker monitors encryption times (L) for AES encryptions (unknown key).
** Organizes the L based ciphertext byte value.
s Attacker creates ETV by collecting L for each ciphertext byte value.

e —y
Encryption-timing vector (ETV): T(X) — {Z(()x),fzx), ,T?i?}
N

Key byte value, unknown Encryption time when

<key, ciphertext> = <unknown, 255>

[ Attack data: One ETV for the key byte value, unknown ]
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Attacking AES with R-SAW: Correlation Analysis

¢ Correlation analysis between attack data and profile dataset.

¢ Highest and outstanding correlation may indicate the unknown key value.
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Attacklng AES W|th R-SAW: Evaluatlon of Attack
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Attacklng AES W|th R- SAW Evaluatlon of Attack
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Attacklng AES W|th R- SAW Evaluation of Attack
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More on paper

¢ Comparison of R-SAW with state-of-the-art cache-based attacks.

= Resiliency of R-SAW against system noise
= Feasibility of R-SAW with small number of attack samples

¢ Discussions on potential mitigations for R-SAW.
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