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ReRAM: Emerging Memory Technology

** Increasing need for efficient and scalable memory systems.
+* DRAM technologies do not match the capacity demand.

*** Resistive memory (ReRAM) is promising for main-memory integration.

= High cell-density and scalability
= | ow static power

ReRAM suffers from varying latency requirements for write,

which could limit system performance if not utilized properly.




This work

LADDER - Processor-side low-overhead framework to improve
ReRAM performance by exploiting variable write latency.




ReRAM Memory Organization

** ReRAM cells are arranged in dense array structures (called Crossbar).

" |ncrease area efficiency

** ReRAM cell arrays form a MAT (i.e., crossbar size of 512x512 cells).

= Contains peripheral circuitry to support read/write
= The basic unit to form banks, ranks and channels
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ReRAM Write Operations

** ReRAM write operation involves two phases.

= RESET: transition from low-resistive state to high-resistive state (i.e., ‘1’ = ‘0’)
= SET: transition from high-resistive state to low-resistive state (i.e., ‘0’ 2 ‘1’)
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ReRAM Write Operations

** ReRAM write operation involves two phases.

= RESET: transition from low-resistive state to high-resistive state (i.e., ‘1’ = ‘0’)
= SET: transition from high-resistive state to low-resistive state (i.e., ‘0’ 2 ‘1’)
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ReRAM Write Operations

** ReRAM write operation involves two phases.

= RESET: transition from low-resistive state to high-resistive state (i.e., ‘1’ = ‘0’)
= SET: transition from high-resistive state to low-resistive state (i.e., ‘0’ 2 ‘1’)
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ReRAM Write Operations

** ReRAM write operation involves two phases.

= RESET: transition from low-resistive state to high-resistive state (i.e., ‘1’ = ‘0’)
= SET: transition from high-resistive state to low-resistive state (i.e., ‘0’ 2 ‘1’)

% RESET latency, t = C * e_k|Vd| V4 = Voltage drop; across target cell
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RESET latency of a ReRAM cell is exponentially proportional to
the voltage drop across the target cell.




Variable RESET Latency
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Variable RESET Latency

Sneak current through half-selected cells Effective voltage drop, Vg <V
‘ V4
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Location/Content Dependence of RESET
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RESET latency varies significantly based on data-pattern and location.
Using worst case reset latency can significantly degrade system performance




Prior Works and Motivation

+»* Architecture and circuit-level techniques:

= Dynamic reset voltage to compensate the IR-drop (e.g., Zokaee et al. HPCA’20)

= Track bitline data patterns with custom profiling circuitry (e.g., Wen et al. TCAD’19)
= Model location dependent RESET latency (e.g., Zhang et al. DATE’16)

» Limit sneak current at crossbar level (e.g., Xu et al. HPCA’15)

** Issues:

= Additional circuitry increases design complexity of memory subsystems
= Do not harness the full potential gains

A processor-side scheme that utilizes variable RESET latency, without
adversely impacting the complexity of commodity ReRAM devices.




Overview of LADDER
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Location & Data-Content Aware Latency Model

x64 ReRAM Memory
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** Each MAT stores 1 byte (8-bit) per memory block.
** 8 MATs in each chip are used to store one memory block (64 WLs total).




Location & Data-Content Aware Latency Model
¢ Ideally, both WL and BL data pattern should be monitored.

= j.e., keep the counter of ‘1’s in each row and column
= Profiling BL content (i.e., column) in memory controller is prohibitively expensive

** Tradeoff: Track number of ‘1’s in WL (i.e., row) only (LRS metadata)

“» WL and BL location and WL content of target cell, < WL, BL, Cy,.. >.

N

= WL,BL: Wordline and bitline locations of a target cell
= LRS-counter, Cj,..: Maximum number of ‘1’s across WLG [ i+ -

1
- L
) . w oo __J-,
Wordline group (WLG) LRS-counter 9. Maximum No. of Clrs“ _I- |
‘1’s in WLG I
‘If""\ (A0 T~ 1) £ 3 ) WL : :
l s s :_:llr: e Jll’:_ N ¥ r:_- == " I

I A e I BL %
SR ST I W S P S Y B (R B ReRAM MAT
< 64 MATs (across 8 chips) >




LADDER-Basic Data Write Operation
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LADDER-Basic Data Write Operation
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Optimization Opportunities with LADDER-Basic

+*»» Each data write requires a Stale Memory Block (SMB) read.

** Non-trivial metadata maintenance overhead.

=  Additional reads and writes for LRS-metadata
= Metadata storage overhead

** How to get rid of Stale Memory Block (SMB) Reads?

** How to reduce LRS-metadata maintenance overhead?
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LADDER-Est: Eliminating SMB Reads

¢ RESET latency depends only on maximum no. of ‘1’s in WLG.

** LRS-metadata estimation scheme:

= Tracks only the worst-case byte in a newly-written data as metadata
= Memory controller can update no. of ‘1’s in the worst-case byte without old data
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LRS-metadata Estimation Principle
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LRS-metadata Estimation Principle

Memory block 0 (MBg)

Worst case byte, Sg =2 | ~TT=---—o_______
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LRS-metadata Estimation Principle

Estimated counter (ZS’,-V’) > Actual counter (C}.g

RESET Latency corresponding to estimated counter is
equal or higher than minimally required latency.

ZS’i” is updated using the newly written block > No more SMB reads

Accurate LRS-counter (LADDER-Basic), C),.. = 3
Estimated LRS-counter, Y S} = 4
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LADDER-Estimate Scheme
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LADDER-Est: Optimized LADDER Logic

Write arrives at memory controller Write is dispatched to ReRAM memory
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Improving Estimation Performance with Shifting

¢ Observation: Logical value ‘1’s are clustered together in a few mats.

¢ Each data block in the WLG leverages a distinct shift based on its position in WL.

¢ During read, reverse shift is performed to restore original bit order.
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LADDER-Hybrid: Reducing LRS-metadata Overhead

** WLs closer to the write driver are relatively insensitive to WL-contents.

+* Multi-Granularity LADDER Counters: Selectively reduce LRS-counter precision.
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LADDER Latency Model

+* Modified nodal analysis to obtain the latency model.
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Evaluation Methodology

+* Simulator: Gem5 full-system simulation (Kernel: Linux 3.4).

**CPU: 4-core, Out-of-order, x86
*»* Cache: Private L1/L2 cache, shared L3 cache
**Memory: 16GB dual channel ReRAM memory, 256 MATs/bank, 512x512 crossbar

** Workloads: SPEC2006 (reference input), PARSEC2 (sim-large input).

** Schemes:

= Baseline: Worst case fixed latency

= Prior state-of-the-art schemes: Bitline data pattern (BLP)l, SpIit—reset2

= LADDER: LADDER-Basic, LADDER-Estimation with shifting, LADDER-Hybrid
= QOracle: Location and content-aware writes with no overhead (theoretical)

1. Exploiting In-memory Data Patterns for Performance Improvement on Crossbar Resistive Memory, |EEE TCAD’19
2. Overcoming the challenges of crossbar resistive memory architectures, HPCA’15 I%a



Evaluation: Read/Write Performance

79% write latency reduction compared to baseline  37% and 23% reduction compared to Split-reset and BLP
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Evaluation: LRS-metadata Estimation Effectiveness
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Overall Speedup

Evaluation

On average, 22% and 13% speedup over Split-reset and BLP respectively

98% of the performance of the ideal scheme
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Evaluation: Hardware Overhead Analysis

** ReRAM storage overhead: 1.56% for LADDER-Est and 0.97% for LADDER-Hybrid.
** On-chip storage for LADDER latency table: 512 Bytes (8x8x8).

¢ LADDER logic and LRS-metadata cache overhead.

= |mplemented LADDER logic using Verilog
=  Synthesized using Synopsis Design Compiler with 45nm
= Used CACTI7 to LRS-metadata Cache
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More on Paper

¢ Additional details of LADDER designs. [Rate, S © o, Pagel | soot
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Conclusions

+* LADDER - a processor-side scheme improving write performance for

ReRAM crossbar main memories.

** A counter-based mechanism (LRS-metadata) to track WL data pattern.

*» Several novel optimizations to further enhance LADDER.

** Achieves considerable performance and energy efficiency improvements
over state-of-the-art techniqgues with minimal overheads.
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Thanks! Questions?

Md Hafizul Islam Chowdhuryy
Email: reyad@knights.ucf.edu

ﬂ


mailto:reyad@knights.ucf.edu

ReRAM Memory Organization

** ReRAM cells are arranged in dense array structure (called Crossbar).

" |ncreases area efficiency

** ReRAM cell arrays form MAT (i.e., crossbar size of 512x512 cells).

= MAT contains peripheral circuitry to support read/write
= MAT is the basic unit, which forms banks, chips and ranks of a ReRAM module
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ReRAM Memory Organization

ReRAM Memory
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ReRAM Write Operation

** ReRAM write operation involves two phases.

= RESET: Transition from low-resistive state to high-resistive state (i.e., ‘1’ = ‘0’)
= SET: Transition from high-resistive state to low-resistive state (i.e., ‘0’ =2 ‘1’)
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Location & WL-Content Aware Latency Model

+** Bitline content-aware scheme requires either:

= Specialized circuit support in memory to count LRS cell, or
= Non-trivial overhead of tracking LRS count in many bitlines

+* Tradeoff: Use LRS cell count in WL only (called LRS metadata)

“» WL and BL location and WL content of target cell, < WL, BL, Cy,.. >.

= WL,BL: Wordline and bitline location of target cell ~

1. Worst case LRS-count across selected WLs
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Physical Mapping of Memory Block
15800 E0E “H29.64 ReRAM Memory

< >

Memory block, 64B | x8 x8¢ x8¢ x8¢ - ¢x8 ¢x8 ¢x8 ¢x8
Chip, | |Chip, | |Chip, | |Chip; 1/0 Chip, | |Chips | |Chipg | |Chip,
&\
7\~
X8 _ -~ N xS - X8
’ \

Wordline group (WLG)

** Each MAT stores 1 byte (8-bit) per memory block.
** 8 MATs in each chips are used to store one memory block (64 WLs total).



Overview of LADDER
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Potential Speedup using Variable RESET

Goal: Can we realize close-to-ideal performance gain
with minimal overhead?




LADDER-Basic Data Write Operation
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