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ReRAM: Emerging Memory Technology

v Increasing need for efficient and scalable memory systems.

v DRAM technologies do not match the capacity demand.

v Resistive memory (ReRAM) is promising for main-memory integration.
§ High cell-density and scalability
§ Low static power

2

ReRAM suffers from varying latency requirements for write, 
which could limit system performance if not utilized properly.



v Increasing demand for efficient and scalable memory system.

v Traditional memory (i.e., DRAM) cannot match the capacity demand.

v Resistive memory (ReRAM) is promising for main-memory integration.
§ High cell-density
§ Superior data-retention
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ReRAM suffer from location/content-dependent variable write 
latency, limiting system performance.

LADDER - Processor-side low-overhead framework to improve 
ReRAM performance by exploiting variable write latency.

This work



ReRAM Crossbar

ReRAM Memory Organization
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v ReRAM cells are arranged in dense array structures (called Crossbar).
§ Increase area efficiency

v ReRAM cell arrays form a MAT (i.e., crossbar size of 512x512 cells).
§ Contains peripheral circuitry to support read/write
§ The basic unit to form banks, ranks and channels
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ReRAM Write Operations
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ReRAM Crossbar

v ReRAM write operation involves two phases.
§ RESET: transition from low-resistive state to high-resistive state (i.e., ‘1’ à ‘0’)
§ SET: transition from high-resistive state to low-resistive state (i.e., ‘0’ à ‘1’)
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ReRAM Write Operations
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ReRAM Crossbar

v ReRAM write operation involves two phases.
§ RESET: transition from low-resistive state to high-resistive state (i.e., ‘1’ à ‘0’)
§ SET: transition from high-resistive state to low-resistive state (i.e., ‘0’ à ‘1’)
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ReRAM Write Operations

7

ReRAM Crossbar

v ReRAM write operation involves two phases.
§ RESET: transition from low-resistive state to high-resistive state (i.e., ‘1’ à ‘0’)
§ SET: transition from high-resistive state to low-resistive state (i.e., ‘0’ à ‘1’)
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ReRAM Write Operations
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ReRAM Crossbar

v ReRAM write operation involves two phases.
§ RESET: transition from low-resistive state to high-resistive state (i.e., ‘1’ à ‘0’)
§ SET: transition from high-resistive state to low-resistive state (i.e., ‘0’ à ‘1’)

v RESET latency, 𝑡 = 𝐶 ∗ 𝑒!"|𝑽𝒅|
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𝑽𝒅 = Voltage drop across target cell

RESET latency of a ReRAM cell is exponentially proportional to 
the voltage drop across the target cell.



Variable RESET Latency
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Variable RESET Latency
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Sneak current through half-selected cells

RESET latency, 𝑡 = 𝐶 ∗ 𝑒!"|𝑽𝒅|

Effective voltage drop, 𝑽𝒅 < 𝑽

Non-zero wire resistance



Location/Content dependency 
of RESET latency

Location/Content Dependence of RESET
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v RESET latency varies significantly based on data-pattern and location.
v Using worst case reset latency can significantly degrade system performance.



Prior Works and Motivation
v Architecture and circuit-level techniques: 

§ Dynamic reset voltage to compensate the IR-drop (e.g., Zokaee et al. HPCA’20)
§ Track bitline data patterns with custom profiling circuitry (e.g., Wen et al. TCAD’19)
§ Model location dependent RESET latency (e.g., Zhang et al. DATE’16)
§ Limit sneak current at crossbar level (e.g., Xu et al. HPCA’15)

v Issues: 
§ Additional circuitry increases design complexity of memory subsystems
§ Do not harness the full potential gains
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A processor-side scheme that utilizes variable RESET latency, without 
adversely impacting the complexity of commodity ReRAM devices.



Overview of LADDER
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Location & Data-Content Aware Latency Model
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v Each MAT stores 1 byte (8-bit) per memory block.
v 8 MATs in each chip are used to store one memory block (64 WLs total).
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64 MATs (across 8 chips)

v Ideally, both WL and BL data pattern should be monitored.
§ i.e., keep the counter of ‘1’s in each row and column
§ Profiling BL content (i.e., column) in memory controller is prohibitively expensive

v Tradeoff: Track number of ‘1’s in WL (i.e., row) only (LRS metadata)

v WL and BL location and WL content of target cell, < 𝑾𝑳,𝑩𝑳, 𝑪𝒍𝒓𝒔
𝒘 >.

§ 𝑾𝑳,𝑩𝑳:  Wordline and bitline locations of a target cell
§ LRS-counter, 𝑪𝒍𝒓𝒔

𝒘 : Maximum number of ‘1’s across WLG

Location & Data-Content Aware Latency Model
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LADDER-Basic Data Write Operation
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LADDER-Basic Data Write Operation
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v Each data write requires a Stale Memory Block (SMB) read.

v Non-trivial metadata maintenance overhead.
§ Additional reads and writes for LRS-metadata
§ Metadata storage overhead

Optimization Opportunities with LADDER-Basic
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v How to get rid of Stale Memory Block (SMB) Reads?

v How to reduce LRS-metadata maintenance overhead?



LADDER-Est: Eliminating SMB Reads
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v RESET latency depends only on maximum no. of ‘1’s in WLG.

v LRS-metadata estimation scheme:
§ Tracks only the worst-case byte in a newly-written data as metadata
§ Memory controller can update no. of ‘1’s in the worst-case byte without old data



LRS-metadata Estimation Principle
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LRS-metadata Estimation Principle
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Bit ‘0’

Bit ‘1’

LRS-metadata Estimation Principle
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Accurate LRS-counter (LADDER-Basic), 𝑪𝒍𝒓𝒔𝒘 = 3

Memory block 1 (MB1)
Worst case byte, 𝑺𝟏𝑴 = 𝟐

Estimated LRS-counter, ∑𝑺𝒊𝑴 = 4

Memory block 0 (MB0)

Worst case byte, 𝑺𝟎𝑴 = 𝟐
Estimated counter (Σ𝑺𝒊𝑴) ≥ Actual counter (𝑪𝒍𝒓𝒔

𝒘 )

RESET Latency corresponding to estimated counter is 
equal or higher than minimally required latency.

Σ𝑺𝒊𝑴 is updated using the newly written block à No more SMB reads



MAT0 MAT1 MAT2 MAT3 MAT4 MAT5 MAT6 MAT7

16
4 0 5 0Estimated counters:

0b00111100 0b00000000 0b00111110 0b00000000

LADDER-Estimate Scheme
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LADDER-Est: Optimized LADDER Logic
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Improving Estimation Performance with Shifting
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v Observation: Logical value ‘1’s are clustered together in a few mats.

v Each data block in the WLG leverages a distinct shift based on its position in WL.

v During read, reverse shift is performed to restore original bit order.
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LADDER-Hybrid: Reducing LRS-metadata Overhead
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v WLs closer to the write driver are relatively insensitive to WL-contents.

v Multi-Granularity LADDER Counters: Selectively reduce LRS-counter precision.
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LADDER Latency Model
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Derived latency tables for different 𝐶()*+ (data pattern) at varying ,-.- ( Location)

𝑪𝒍𝒓𝒔
𝒘 range < 𝟎, 𝟔𝟑 > 𝑪𝒍𝒓𝒔

𝒘 range < 𝟔𝟒, 𝟏𝟐𝟕 > 𝑪𝒍𝒓𝒔
𝒘 range < 𝟏𝟐𝟖, 𝟏𝟗𝟏 > 𝑪𝒍𝒓𝒔

𝒘 range < 𝟏𝟗𝟐, 𝟐𝟓𝟓 >

𝑪𝒍𝒓𝒔
𝒘 range < 𝟑𝟐𝟎, 𝟑𝟖𝟑 > 𝑪𝒍𝒓𝒔

𝒘 range < 𝟑𝟖𝟒, 𝟒𝟒𝟕 > 𝑪𝒍𝒓𝒔
𝒘 range < 𝟒𝟒𝟖, 𝟓𝟏𝟐 >𝑪𝒍𝒓𝒔

𝒘 range < 𝟐𝟓𝟔, 𝟑𝟏𝟗 >

v Modified nodal analysis to obtain the latency model.



Evaluation Methodology
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v Simulator: Gem5 full-system simulation (Kernel: Linux 3.4).
vCPU: 4-core, Out-of-order, x86
vCache: Private L1/L2 cache, shared L3 cache
vMemory: 16GB dual channel ReRAM memory, 256 MATs/bank, 512x512 crossbar

v Workloads: SPEC2006 (reference input), PARSEC2 (sim-large input).

v Schemes:
§ Baseline: Worst case fixed latency
§ Prior state-of-the-art schemes: Bitline data pattern (BLP)1, Split-reset2

§ LADDER: LADDER-Basic, LADDER-Estimation with shifting, LADDER-Hybrid
§ Oracle: Location and content-aware writes with no overhead (theoretical)

1. Exploiting In-memory Data Patterns for Performance Improvement on Crossbar Resistive Memory, IEEE TCAD’19
2. Overcoming the challenges of crossbar resistive memory architectures, HPCA’15



Evaluation: Read/Write Performance
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Average write service time to ReRAM memory

Average latency for processor data reads

79% write latency reduction compared to baseline 37% and 23% reduction compared to Split-reset and BLP

56% read latency reduction compared to baseline 37% and 16% reduction compared to Split-reset and BLP



Evaluation: LRS-metadata Estimation Effectiveness
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LRS-counter differences between LADDER-basic and LADDER-Est without Shifting

LRS-counter differences between LADDER-basic and LADDER-Est with Shifting

Typically, RESET latency 
does not change

Improved LRS-counter 
(compared to accurate counting)



Evaluation: Overall Speedup
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On average, 22% and 13% speedup over Split-reset and BLP respectively

98% of the performance of the ideal scheme



v ReRAM storage overhead: 1.56% for LADDER-Est and 0.97% for LADDER-Hybrid.

v On-chip storage for LADDER latency table: 512 Bytes (8x8x8).

v LADDER logic and LRS-metadata cache overhead.
§ Implemented LADDER logic using Verilog
§ Synthesized using Synopsis Design Compiler with 45nm
§ Used CACTI7 to LRS-metadata Cache

Evaluation: Hardware Overhead Analysis

32

Module Area
(mm2)

Power
(mW)

Latency
(ns)

LRS-metadata Update Module 0.0061 3.71 0.17

Latency Query Module 0.0047 6.57 0.32

LRS-metadata Cache (64KB) 0.2442 48.83 0.81



More on Paper
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v Additional details of LADDER designs.
v Overhead analysis of LADDER:

§ Overhead of metadata maintenance
§ Dynamic energy consumption overheads

v LADDER with wear-leveling techniques.
v Crash-consistency of LADDER.
v And more… Wear-leveling in LADDER

Percentage of additional reads Percentage of additional writes



Conclusions
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v LADDER – a processor-side scheme improving write performance for 
ReRAM crossbar main memories.

v A counter-based mechanism (LRS-metadata) to track WL data pattern.
v Several novel optimizations to further enhance LADDER.
v Achieves considerable performance and energy efficiency improvements 

over state-of-the-art techniques with minimal overheads.



Thanks! Questions?
Md Hafizul Islam Chowdhuryy
Email: reyad@knights.ucf.edu

mailto:reyad@knights.ucf.edu
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ReRAM Memory Organization
v ReRAM cells are arranged in dense array structure (called Crossbar).

§ Increases area efficiency

v ReRAM cell arrays form MAT (i.e., crossbar size of 512x512 cells).
§ MAT contains peripheral circuitry to support read/write
§ MAT is the basic unit, which forms banks, chips and ranks of a ReRAM module
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ReRAM Memory Organization

37

Chip0 Chip1 Chip2 Chip3 Chip4 Chip5 Chip6 Chip7I/O

ReRAM Memory

{Bank (x8)

MAT …

…

…

…

Lo
ca

l W
L 

D
ec

od
er

Local BL Multiplexer

…

Sense Amp/Write Driver
Bank

…… … …

…

…
…
…

ReRAM MAT

MAT MAT

MAT …MAT MAT

… …



0

ReRAM Write Operation
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ReRAM Crossbar

v ReRAM write operation involves two phases.
§ RESET: Transition from low-resistive state to high-resistive state (i.e., ‘1’ à ‘0’)
§ SET: Transition from high-resistive state to low-resistive state (i.e., ‘0’ à ‘1’)
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v Bitline content-aware scheme requires either:
§ Specialized circuit support in memory to count LRS cell, or
§ Non-trivial overhead of tracking LRS count in many bitlines 

v Tradeoff: Use LRS cell count in WL only (called LRS metadata)

v WL and BL location and WL content of target cell, < 𝑾𝑳,𝑩𝑳, 𝑪𝒍𝒓𝒔
𝒘 >.

§ 𝑾𝑳,𝑩𝑳:  Wordline and bitline location of target cell
§ 𝑪𝒍𝒓𝒔

𝒘 : Worst case LRS-count across selected WLs

Location & WL-Content Aware Latency Model
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Physical Mapping of Memory Block
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v Each MAT stores 1 byte (8-bit) per memory block.
v 8 MATs in each chips are used to store one memory block (64 WLs total).

Wordline group (WLG)



Overview of LADDER
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Potential Speedup using Variable RESET
v Ideal speedup using minimally required RESET latency compared to worst-case latency.

v Up to 1.24x performance improvement using location dependence.

v Up to 1.6x performance improvement using location and content dependence.
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Goal: Can we realize close-to-ideal performance gain 
with minimal overhead?



LADDER-Basic Data Write Operation
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