
Are Coherence Protocol States
vulnerable to Information Leakage?

Fan Yao, Milos Doroslovacki, Guru Venkataramani
The George Washington University

HPCA 2018, Vienna, Austria

1

The Trend of Security Threats

2

The Trend of Security Threats

2

Traditional Attacks

The Trend of Security Threats

2

Traditional Attacks Emerging Attacks

Hardware Infrastructure

Trojan Spy

Information Leakage on Processors

3

Covert Timing Channels

Microarchitectural Resources
Hardware Infrastructure

Trojan Spy

Information Leakage on Processors

3

Covert Timing Channels

Microarchitectural Resources
Hardware Infrastructure

…01010011…

Trojan Spy

Information Leakage on Processors

3

Covert Timing Channels

Related Works on Covert Timing Channels

❖ Cache timing channels are dominant
❖ Caches expose relatively large attack surface

❖ Existing Channels
❖ Flush + Reload attack

❖ Spy flushes blocks and reloads them later
❖ Yarom et al. USENIX Security’14, He et al. MICRO’17

❖ Prime + Probe attack
❖ Spy primes the cache with its own blocks and probes them later
❖ Chen et al. MICRO’14, Hunger et al. HPCA’15, Yan et al. MICRO’16

4

Is Cache Coherence Fabric Leaky ?

5

Is Cache Coherence Fabric Leaky ?

5

Load operation latency in Exclusive and Shared states*

* Latency measurements from Intel Xeon 5650 processor

Is Cache Coherence Fabric Leaky ?

5

Load operation latency in Exclusive and Shared states*

* Latency measurements from Intel Xeon 5650 processor

Cache Coherence in Multi-core Processors

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
1

Core
4

Processor Socket

Local Cache

Core
 2

Core
 3

6

Shared Cache

Cache Coherence in Multi-core Processors

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
1

Core
4

Processor Socket

Local Cache

Core
 2

Core
 3

6

Cache Block

Shared Cache

Cache Coherence in Multi-core Processors

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
1

Core
4

Processor Socket

Local Cache

Core
 2

Core
 3

6

0 0 0 0Cache Block

Core Valid BitsShared Cache

Cache Coherence - Shared Block

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
1

Core
4

Local Cache

Core
 2

Core
 3

7

0 0 1 1Shared Cache Block

Core Valid BitsShared Cache

A (S) A (S)

Processor Socket

Cache Coherence - Shared Block

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
1

Core
4

Local Cache

Core
 2

Core
 3

8

0 0 1 1Shared Cache Block

Core Valid BitsShared Cache

A (S) A (S)

Processor Socket

Cache Coherence - Shared Block

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
1

Core
4

Local Cache

Core
 2

Core
 3

8

0 0 1 1Shared Cache Block

Core Valid BitsShared Cache

A (S) A (S)

Processor Socket

Cache Coherence - Shared Block

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
1

Core
4

Local Cache

Core
 2

Core
 3

8

0 0 1 1Shared Cache Block

Core Valid BitsShared Cache

A (S) A (S)

response from LLC directly

Processor Socket

Cache Coherence - Exclusive Block

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
1

Core
4

Local Cache

Core
 2

Core
 3

9

0 0 1 0Exclusive Cache Block

Core Valid BitsShared Cache

A (E)

Processor Socket

Cache Coherence - Exclusive Block

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
1

Core
4

Local Cache

Core
 2

Core
 3

9

0 0 1 0Exclusive Cache Block

Core Valid BitsShared Cache

A (E)

Processor Socket

Cache Coherence - Exclusive Block

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
1

Core
4

Local Cache

Core
 2

Core
 3

9

0 0 1 0Exclusive Cache Block

Core Valid BitsShared Cache

A (E)

Processor Socket

Coherence msg to
private core

Cache Coherence - Exclusive Block

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
1

Core
4

Local Cache

Core
 2

Core
 3

9

0 0 1 0Exclusive Cache Block

Core Valid BitsShared Cache

A (E)

Processor Socket

Coherence msg to
private core

Response msg to
LLC

Cache Coherence - Exclusive Block

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
1

Core
4

Local Cache

Core
 2

Core
 3

9

0 0 1 0Exclusive Cache Block

Core Valid BitsShared Cache

A (E)

Processor Socket

Coherence msg to
private core

Response msg to
LLC

Data response

Cache Coherence – Inter-Socket

10

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
1

Core
4

Local Cache

Core
 2

Core
 3

0 0 1 1Shared Cache Block

Core Valid BitsShared Cache

A (S) A (S)

Processor Socket

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
1

Core
4

Local Cache

Core
 2

Core
 3

0 0 0 0

Core Valid BitsShared Cache

Processor Socket

O
ff-chip Interconnect

Invalid Cache Block

Cache Coherence – Inter-Socket

10

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
1

Core
4

Local Cache

Core
 2

Core
 3

0 0 1 1Shared Cache Block

Core Valid BitsShared Cache

A (S) A (S)

Processor Socket

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
1

Core
4

Local Cache

Core
 2

Core
 3

0 0 0 0

Core Valid BitsShared Cache

Processor Socket

O
ff-chip Interconnect

Invalid Cache Block

Cache Coherence – Inter-Socket

11

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
1

Core
4

Local Cache

Core
 2

Core
 3

0 0 0 0

Core Valid BitsShared Cache

Processor Socket

O
ff-chip Interconnect

Invalid Cache Block

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
1

Core
4

Local Cache

Core
 2

Core
 3

0 0 1 0Exclusive Cache Block

Core Valid BitsShared Cache

A (E)

Processor Socket

Cache Coherence – Inter-Socket

11

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
1

Core
4

Local Cache

Core
 2

Core
 3

0 0 0 0

Core Valid BitsShared Cache

Processor Socket

O
ff-chip Interconnect

Invalid Cache Block

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
1

Core
4

Local Cache

Core
 2

Core
 3

0 0 1 0Exclusive Cache Block

Core Valid BitsShared Cache

A (E)

Processor Socket

Full Latency Profiles
❖ Intel Xeon Dual Socket Server

12

Fig. 2: Load operation latency in various (location, coherence
state) combinations.

cores. Each requestor thread periodically issues load opera-
tions to local and/or remote cache blocks that are in one of
the two coherence states: S or E. In this study, we use a dual-
socket Intel Xeon X5650 server, each with 6 cores running at
2.67 GHz frequency. Each processor has a 32 KB private L1,
256 KB private L2 caches, 12 MB shared L3 cache within each
socket. All of the caches are kept coherent in hardware. Our
experiments were conducted on a system with a representative
workload for a typical desktop server (i.e., applications such
as browser, dropbox, code editors were running alongside our
code as we made our measurements).

For our measurements, we generate 1,000 memory read
(load) operations for each combination pair of (location,
coherence state), and time these loads using rdtsc instruction.
We note that coherence transactions are generated in each case.
For example, in Local Shared configuration, the requested data
is a local L2 cache miss and is fetched from L3 cache in the
same (local) chip where the data is present in the S state. In
Local Exclusive, the requested data is local cache miss and is
fetched from another core’s L1 or L2 cache belonging to the
local chip where the data is present in the E state. Similarly,
in Remote Shared, the requested data is present in the S state
in the L3 cache of a different (remote) processor chip. In
Remote Exclusive, the requested data is present in the E state
in a L2 cache belonging to a remote chip. Figure 2 shows
the cumulative distribution function (CDF) for the various
(location, coherence state) combination pairs. Our results show
that these combination pairs show distinct bands of latency
distributions. We observe that accessing a cache block in the
E state incurs longer latency than accessing data block in S
state (e.g., 124 cycles for accessing local E state block and 98
cycles for local S state data block) triggered by cache lookup
in different coherence states (described in Section VI). Similar
latency difference could also be observed for accessing blocks
in remote caches as well. Our experiments demonstrate that
the latency values are contained within a relatively narrow
band for each configuration, and the bands corresponding
to different configurations are sufficiently distinct from each
other. This clearly demonstrates the viability of exploiting
the latency difference between these combination pairs to
implement timing channels.

(a) Cache block in E state

(b) Cache block in S state

Fig. 3: Trojan explicitly controlling Cache Coherence States
as E or S by running on one or two cores within the multi-core
processor. The dotted lines show the service path for a data
block residing in E and S states respectively.

VI. EXPLOITING CACHE COHERENCE

In this section, we show some practical ways that the trojan
and spy processes can exploit cache latency differences to
exfiltrate sensitive data.

A. On-chip Cache Coherence
Figure 3 shows an illustration of the attack using on-chip

coherence. Here we assume a multi-core processor where each
core has a private write-back cache kept coherent using a
variant of MESI protocol, and all of the cores have access
to a shared last level cache (LLC).

During a read miss in the private cache, the miss request is
first sent to the shared LLC. The LLC maintains the core valid
bits vector for each block that denotes which of the coherent
private caches have a copy of the cache block [11]. An 1 bit
value indicates that the corresponding core caches that block
currently, and a 0 indicates that the corresponding core does
not have that block.

If the total number of 1’s in the vector is greater than one,
it indicates that two or more sharers exist for this block. In
other words, this denotes that the cache block is in the S state
in the memory subsystem, and the cache copy in the LLC is
clean. Since the LLC has a clean data copy, it can directly
service the cache miss request from the requesting core.

4

Load operation latency in (location, coherence state)
combinations

How to Create Shared Memory?
❖ Coherence transactions happen on shared memory

❖ One possible way: through shared libraries

❖ We use Kernel Same-page Merging (KSM)
❖ OS routinely merges DRAM pages with same content
❖ More stealthy

13

KSM Page Sharing Mechanism

14

KSM Page Sharing Mechanism

14

Process A
address space

yx

Process B
address space

DRAM snapshot

KSM Page Sharing Mechanism

14

Process A
address space

yx

Process B
address space

DRAM snapshot

KSM

KSM Page Sharing Mechanism

14

Process A
address space

yx

Process B
address space

DRAM snapshot

KSM
Process A

address space

yx

Process B
address space

DRAM snapshot

Trojan and Spy Pre-transmission

15

Trojan and Spy Pre-transmission

15

ST

other
processes

1. Trojan and Spy create pages
with same pattern (content)

Trojan and Spy Pre-transmission

15

ST

other
processes

1. Trojan and Spy create pages
with same pattern (content)

2. Trojan and Spy wait for
 KSM to merge pages

Trojan and Spy Pre-transmission

15

ST

other
processes

1. Trojan and Spy create pages
with same pattern (content)

3. Trojan and Spy test page
 merging

ST

other
processes

2. Trojan and Spy wait for
 KSM to merge pages

Encoding in an Information Leakage Channel

16

Encoding in an Information Leakage Channel

16

Encoding in an Information Leakage Channel

16

communication bit

boundary

Encoding in an Information Leakage Channel

16

bit ‘1’ boundary

bit ‘0’

communication bit

boundary

Example Communication Protocol

17

Example Communication Protocol

Trojan creates
Exclusive State for
3 time units (comm.

bit ‘1’)

17

Example Communication Protocol

Trojan creates
Exclusive State for
3 time units (comm.

bit ‘1’)

Trojan creates
Exclusive State for
1 time unit (comm.

bit ‘0’)

17

Example Communication Protocol

Trojan creates
Exclusive State for
3 time units (comm.

bit ‘1’)

Trojan creates
Shared State for 2

time units
(boundary)

Trojan creates
Exclusive State for
1 time unit (comm.

bit ‘0’)

17

Example Communication Protocol

Trojan creates
Exclusive State for
3 time units (comm.

bit ‘1’)

Spy sensed
Exclusive state 3

times , LONG
=> bit ‘1’

Trojan creates
Shared State for 2

time units
(boundary)

Trojan creates
Exclusive State for
1 time unit (comm.

bit ‘0’)

17

Example Communication Protocol

Trojan creates
Exclusive State for
3 time units (comm.

bit ‘1’)

Spy sensed
Exclusive state 3

times , LONG
=> bit ‘1’

Trojan creates
Shared State for 2

time units
(boundary)

Trojan creates
Exclusive State for
1 time unit (comm.

bit ‘0’)

Spy sensed
Shared

=> boundary

17

Example Communication Protocol

Trojan creates
Exclusive State for
3 time units (comm.

bit ‘1’)

Spy sensed
Exclusive state 3

times , LONG
=> bit ‘1’

Trojan creates
Shared State for 2

time units
(boundary)

Trojan creates
Exclusive State for
1 time unit (comm.

bit ‘0’)

Spy sensed
Shared

=> boundary

Spy sensed
Exclusive state 1

time, SHORT
=> bit ‘0’

17

❖ Differing latency profiles
❖ Local Exclusive
❖ Local Shared
❖ Remote Exclusive
❖ Remote Shared

❖ Binary channel encoding - (bit comm., boundary)

The Attack Scenarios

18

Location and Coherence State

Notation Number of Trojan threads
(Local Excl., Local Shared) LExclcomm-LSharedbound 2 (local)

(Remote Excl., Remote Shared) RExclcomm-RSharedbound 2 (remote)

(Remote Excl., Local Excl.) RExclcomm-LExclbound 2 (1 local, 1 remote)

(Remote Excl., Local Shared) RExclcomm-LSharedbound 3 (2 local, 1 remote)

(Remote Shared, Local Excl.) RSharedcomm-LExclbound 3 (1 local, 2 remote)

(Remote Shared, Local Shared) RSharedcomm-LSharedbound 4 (2 local, 2 remote)

Covert Channel through Coherence States

❖ Trojan’s transmitted bits

Bit pattern (100 bits) covertly transmitted by the trojan

19

10010…

�

�

� �� �� �� �� �� �� �� 	�
� ���

��
��
��
��

�� �����

❖ Spy’s reception

Covert Channel through Coherence States

20

�
���
���
���
���
���

� ��� ��� ��� ��� ��� ��� ��� 	��

��
��
��
�
�	
��

�
��

�
��
���
���
���
���
���

�� �� �� �� �� ��

��� ���� ����

�
���
���
���
���
���

� ��� ��� ��� ��� ��� ��� ��� 	��

��
��
��
�
�	
��

�
��

�
��
���
���
���
���
���

�� �� �� �� �� ��

��� ���� ����

RExclcomm-LSharedbound RSharedcomm-LExclbound

❖ Spy’s reception

Covert Channel through Coherence States

20

�
���
���
���
���
���

� ��� ��� ��� ��� ��� ��� ��� 	��

��
��
��
�
�	
��

�
��

�
��
���
���
���
���
���

�� �� �� �� �� ��

��� ���� ����

�
���
���
���
���
���

� ��� ��� ��� ��� ��� ��� ��� 	��

��
��
��
�
�	
��

�
��

�
��
���
���
���
���
���

�� �� �� �� �� ��

��� ���� ����

RExclcomm-LSharedbound RSharedcomm-LExclbound

❖ Spy’s reception

Covert Channel through Coherence States

20

�
���
���
���
���
���

� ��� ��� ��� ��� ��� ��� ��� 	��

��
��
��
�
�	
��

�
��

�
��
���
���
���
���
���

�� �� �� �� �� ��

��� ���� ����

�
���
���
���
���
���

� ��� ��� ��� ��� ��� ��� ��� 	��

��
��
��
�
�	
��

�
��

�
��
���
���
���
���
���

�� �� �� �� �� ��

��� ���� ����

RExclcomm-LSharedbound RSharedcomm-LExclbound

1 00 1 0

❖ Spy’s reception

Covert Channel through Coherence States

20

�
���
���
���
���
���

� ��� ��� ��� ��� ��� ��� ��� 	��

��
��
��
�
�	
��

�
��

�
��
���
���
���
���
���

�� �� �� �� �� ��

��� ���� ����

�
���
���
���
���
���

� ��� ��� ��� ��� ��� ��� ��� 	��

��
��
��
�
�	
��

�
��

�
��
���
���
���
���
���

�� �� �� �� �� ��

��� ���� ����

RExclcomm-LSharedbound RSharedcomm-LExclbound

1 00 1 0
1 00 1 0

❖ Spy’s reception

Covert Channel through Coherence States

20

�
���
���
���
���
���

� ��� ��� ��� ��� ��� ��� ��� 	��

��
��
��
�
�	
��

�
��

�
��
���
���
���
���
���

�� �� �� �� �� ��

��� ���� ����

�
���
���
���
���
���

� ��� ��� ��� ��� ��� ��� ��� 	��

��
��
��
�
�	
��

�
��

�
��
���
���
���
���
���

�� �� �� �� �� ��

��� ���� ����

RExclcomm-LSharedbound RSharedcomm-LExclbound

1 00 1 0
1 00 1 0

Achieved bitrate: 700Kbps

❖ Additional noise
❖ Run memory intensive background threads (Kernel Build)
❖ Vary number of threads from 1~8

Sensitivity to External Noise

21

❖ Additional noise
❖ Run memory intensive background threads (Kernel Build)
❖ Vary number of threads from 1~8

Sensitivity to External Noise

� �
�� �
�� �
�� �
�� �
��� �

����������	
��� ��������	
��� ������������ ���������	
��� ��	
���������� ��	
�������	
���

�
��

��
��
��
	

��
�

����
����
����
����
����

Fig. 9: Raw bit accuracy captured by the spy when co-located with external processes (kernel-build [14]).

Fig. 10: Effective information bit transmission rate with error
correction scheme under medium (4 co-located kernel-build
processes) and high (8 co-located kernel-build) noise levels.

receive acknowledgment packet (NACK bit), and hence will
retransmit until a successful acknowledgment (NACK=0) is
received.

Our experimental results provide a useful insight that the
covert timing channels introduced due to coherence states can
be robust in terms of bit accuracy and high transmission rates.
Also, incorporating even a fairly simple error detection and
retransmission scheme can significantly improve bit accuracy
with a relatively small impact on peak bit rate.

D. Symbols Encoding Multi-bits

Besides just increasing the transmission speed, the volume
of information transmitted by a covert channel can be in-
creased by encoding multiple bits using symbols. Due to the
presence of multiple distinct latency bands corresponding to
(location, coherence state) combination pairs, we implement
a covert timing channel that transmits symbols encoding 2-
bits in every transmission. We utilize four combination pairs
(RExclc, LExclc, RSharedc, LSharedc) to encode one of four
distinct symbol values. The spy infers the symbol by issuing
load instructions (similar to our algorithm in Section VII-B)
and timing the load operation latency corresponding to com-
bination pairs.

Our experiments demonstrate a peak transmission rate of
around 1.1 Mbps, which is significantly higher than the
700 Kbps observed when using just one combination pair
of (location, coherence state) for encoding binary data for
transmission. Figure 11 shows spy’s reception of symbols
through timed load operations along with a magnified view
of the first 9 symbols or 18 bits (100101000110011011),
in which all four distinct symbols are observed. We note that

Fig. 11: Multi-bit symbol transmission using 4 combination
pairs to encode 2-bit symbols. Magnified view of first 18 bits
reception is shown, that captures all 4 possible symbol values.

more sophisticated symbol encoding mechanisms may achieve
even higher transmission rates, and our main goal here is
simply to demonstrate alternative ways that an adversary can
exploit in order to achieve higher bandwidths.

E. Discussion
Applicability to Different Coherence Protocols. Cache co-

herence protocols in multi-core/multi-processor systems can
be categorized into two broad classes: 1. snoop-based pro-
tocols, that broadcast coherence messages on a shared bus,
and 2. directory-based protocols, that offer higher scalability
by maintaining status of cache blocks in directories distributed
throughout the system. The Intel Xeon processors evaluated in
our experiments deploy a variant of directory-based protocol
with LLC’s core-valid-bits that direct coherence messages to
specific cores with possibly valid blocks. On other directory-
based systems, note that additional hops to the home directory
based on address filters can further create different latency
profiles for the adversaries to exploit. For snoop-based proto-
cols, reads on E-state blocks will involve accesses to private
caches of other cores since they hold the exclusive ownership
of these blocks, while reads on S-state blocks are satisfied by
the lower level shared caches that already have a clean copy
of the cache block [15]. This is somewhat similar to LExclc-
LSharedb configuration in Table I. Therefore, our findings
extend to different classes of protocols.

Non-inclusive and Exclusive Caches. We study inclusive
caches in this work. For blocks present (hits) in non-inclusive
LLCs, latency difference between S and E state are still

10

21

❖ With 4 latency values, we can create 2-bit symbols
❖ Each latency value represents a symbol
❖ Much higher transmission bitrate

Multi-bit Symbol Transmission

Multi-bit Symbol Transmission Scheme

Fig. 9: Raw bit accuracy captured by the spy when co-located with external processes (kernel-build [14]).

Fig. 10: Effective information bit transmission rate with error
correction scheme under medium (4 co-located kernel-build
processes) and high (8 co-located kernel-build) noise levels.

receive acknowledgment packet (NACK bit), and hence will
retransmit until a successful acknowledgment (NACK=0) is
received.

Our experimental results provide a useful insight that the
covert timing channels introduced due to coherence states can
be robust in terms of bit accuracy and high transmission rates.
Also, incorporating even a fairly simple error detection and
retransmission scheme can significantly improve bit accuracy
with a relatively small impact on peak bit rate.

D. Symbols Encoding Multi-bits

Besides just increasing the transmission speed, the volume
of information transmitted by a covert channel can be in-
creased by encoding multiple bits using symbols. Due to the
presence of multiple distinct latency bands corresponding to
(location, coherence state) combination pairs, we implement
a covert timing channel that transmits symbols encoding 2-
bits in every transmission. We utilize four combination pairs
(RExclc, LExclc, RSharedc, LSharedc) to encode one of four
distinct symbol values. The spy infers the symbol by issuing
load instructions (similar to our algorithm in Section VII-B)
and timing the load operation latency corresponding to com-
bination pairs.

Our experiments demonstrate a peak transmission rate of
around 1.1 Mbps, which is significantly higher than the
700 Kbps observed when using just one combination pair
of (location, coherence state) for encoding binary data for
transmission. Figure 11 shows spy’s reception of symbols
through timed load operations along with a magnified view
of the first 9 symbols or 18 bits (100101000110011011),
in which all four distinct symbols are observed. We note that

�
���
���
���
���
���

� �� ��� ��� ��� ���

��
��
��
�
�	
��

�
��

��
���
���
���
���

�� �� �� �� �� �� ��
	
��
��� ����

Fig. 11: Multi-bit symbol transmission using 4 combination
pairs to encode 2-bit symbols. Magnified view of first 18 bits
reception is shown, that captures all 4 possible symbol values.

more sophisticated symbol encoding mechanisms may achieve
even higher transmission rates, and our main goal here is
simply to demonstrate alternative ways that an adversary can
exploit in order to achieve higher bandwidths.

E. Discussion
Applicability to Different Coherence Protocols. Cache co-

herence protocols in multi-core/multi-processor systems can
be categorized into two broad classes: 1. snoop-based pro-
tocols, that broadcast coherence messages on a shared bus,
and 2. directory-based protocols, that offer higher scalability
by maintaining status of cache blocks in directories distributed
throughout the system. The Intel Xeon processors evaluated in
our experiments deploy a variant of directory-based protocol
with LLC’s core-valid-bits that direct coherence messages to
specific cores with possibly valid blocks. On other directory-
based systems, note that additional hops to the home directory
based on address filters can further create different latency
profiles for the adversaries to exploit. For snoop-based proto-
cols, reads on E-state blocks will involve accesses to private
caches of other cores since they hold the exclusive ownership
of these blocks, while reads on S-state blocks are satisfied by
the lower level shared caches that already have a clean copy
of the cache block [15]. This is somewhat similar to LExclc-
LSharedb configuration in Table I. Therefore, our findings
extend to different classes of protocols.

Non-inclusive and Exclusive Caches. We study inclusive
caches in this work. For blocks present (hits) in non-inclusive
LLCs, latency difference between S and E state are still

10

Reception of bit sequence

22

100101000110011011

bit ‘00’

RExcl LExcl RShared LShared

bit ‘01’ bit ‘10’ bit ‘11’

❖ With 4 latency values, we can create 2-bit symbols
❖ Each latency value represents a symbol
❖ Much higher transmission bitrate

Multi-bit Symbol Transmission

Multi-bit Symbol Transmission Scheme

Fig. 9: Raw bit accuracy captured by the spy when co-located with external processes (kernel-build [14]).

Fig. 10: Effective information bit transmission rate with error
correction scheme under medium (4 co-located kernel-build
processes) and high (8 co-located kernel-build) noise levels.

receive acknowledgment packet (NACK bit), and hence will
retransmit until a successful acknowledgment (NACK=0) is
received.

Our experimental results provide a useful insight that the
covert timing channels introduced due to coherence states can
be robust in terms of bit accuracy and high transmission rates.
Also, incorporating even a fairly simple error detection and
retransmission scheme can significantly improve bit accuracy
with a relatively small impact on peak bit rate.

D. Symbols Encoding Multi-bits

Besides just increasing the transmission speed, the volume
of information transmitted by a covert channel can be in-
creased by encoding multiple bits using symbols. Due to the
presence of multiple distinct latency bands corresponding to
(location, coherence state) combination pairs, we implement
a covert timing channel that transmits symbols encoding 2-
bits in every transmission. We utilize four combination pairs
(RExclc, LExclc, RSharedc, LSharedc) to encode one of four
distinct symbol values. The spy infers the symbol by issuing
load instructions (similar to our algorithm in Section VII-B)
and timing the load operation latency corresponding to com-
bination pairs.

Our experiments demonstrate a peak transmission rate of
around 1.1 Mbps, which is significantly higher than the
700 Kbps observed when using just one combination pair
of (location, coherence state) for encoding binary data for
transmission. Figure 11 shows spy’s reception of symbols
through timed load operations along with a magnified view
of the first 9 symbols or 18 bits (100101000110011011),
in which all four distinct symbols are observed. We note that

�
���
���
���
���
���

� �� ��� ��� ��� ���

��
��
��
�
�	
��

�
��

��
���
���
���
���

�� �� �� �� �� �� ��
	
��
��� ����

Fig. 11: Multi-bit symbol transmission using 4 combination
pairs to encode 2-bit symbols. Magnified view of first 18 bits
reception is shown, that captures all 4 possible symbol values.

more sophisticated symbol encoding mechanisms may achieve
even higher transmission rates, and our main goal here is
simply to demonstrate alternative ways that an adversary can
exploit in order to achieve higher bandwidths.

E. Discussion
Applicability to Different Coherence Protocols. Cache co-

herence protocols in multi-core/multi-processor systems can
be categorized into two broad classes: 1. snoop-based pro-
tocols, that broadcast coherence messages on a shared bus,
and 2. directory-based protocols, that offer higher scalability
by maintaining status of cache blocks in directories distributed
throughout the system. The Intel Xeon processors evaluated in
our experiments deploy a variant of directory-based protocol
with LLC’s core-valid-bits that direct coherence messages to
specific cores with possibly valid blocks. On other directory-
based systems, note that additional hops to the home directory
based on address filters can further create different latency
profiles for the adversaries to exploit. For snoop-based proto-
cols, reads on E-state blocks will involve accesses to private
caches of other cores since they hold the exclusive ownership
of these blocks, while reads on S-state blocks are satisfied by
the lower level shared caches that already have a clean copy
of the cache block [15]. This is somewhat similar to LExclc-
LSharedb configuration in Table I. Therefore, our findings
extend to different classes of protocols.

Non-inclusive and Exclusive Caches. We study inclusive
caches in this work. For blocks present (hits) in non-inclusive
LLCs, latency difference between S and E state are still

10

Reception of bit sequence

22

100101000110011011

Achieved bitrate: 1100 Kbps!

bit ‘00’

RExcl LExcl RShared LShared

bit ‘01’ bit ‘10’ bit ‘11’

Mitigating Coherence State-based Leakage

23

Key Observation: current processor treats E and S state differently
E state cache line is owned by private cache
S state cache line is owned by shared cache

Hardware-based Mitigation
Shared cache directly responds with cache blocks in E state
Add notification to shared cache when core writes to private cache

Software-based Mitigation
Software based timing obfuscators
KSM usage pattern analysis and detection

Summary
❖ We highlight the vulnerability of cache coherence states

❖ We demonstrate that they are prone to information leakage

❖ This vulnerability can compromise sensitive user data
❖ Can affect millions of processors

❖ Can achieve considerably high transmission rates

❖ We provide insights for information security aware
cache coherence design

24

25

Thanks! Questions?
Contacts

Fan Yao: albertyao@gwu.edu
Guru Venkataramani: guruv@gwu.edu

Acknowledgements

mailto:albertyao@gwu.edu
mailto:guruv@gwu.edu

Bit Accuracy vs. Bitrate

26

90%

92%

94%

96%

98%

100%

100 200 300 400 500 600 700 800 900 1000

R
aw

 B
it

A
cc

ur
ac

y

Bit Rate (Kbps)

90%

92%

94%

96%

98%

100%

100 200 300 400 500 600 700 800 900 1000

 R
aw

 B
it

A
cc

ur
ac

y

Bit Rate (Kbps)
RExclcomm-LSharedboundRSharedcomm-LExclbound

❖ Factors that influence raw bit rates
❖ Spy’s operation interval
❖ Number of occurrences for info. bit states
❖ Number of occurrences for bit boundary states

496 Kbps 610 Kbps

Channel with Retransmission Scheme
❖ Simple retransmission scheme

❖ Trojan and spy switch role (spy sends ACK bit)

27

Channel with Retransmission Scheme
❖ Simple retransmission scheme

❖ Trojan and spy switch role (spy sends ACK bit)

27

transmit secrets through Cache Coherence States

Acknowledge

Channel with Retransmission Scheme
❖ Simple retransmission scheme

❖ Trojan and spy switch role (spy sends ACK bit)

27

transmit secrets through Cache Coherence States

Acknowledge

Fig. 9: Raw bit accuracy captured by the spy when co-located with external processes (kernel-build [14]).

�
���
���
���
���
���
���
���
	��

����
�����

�	
�
��

���
���

��	

���

���
�����

����

���
�����

�	
�
��

��	

����

����
��

��	

����

���	

���

��
��
��
��
�
��
�	

�
�
��
�
��

�������� ���	
��	

Fig. 10: Effective information bit transmission rate with error
correction scheme under medium (4 co-located kernel-build
processes) and high (8 co-located kernel-build) noise levels.

receive acknowledgment packet (NACK bit), and hence will
retransmit until a successful acknowledgment (NACK=0) is
received.

Our experimental results provide a useful insight that the
covert timing channels introduced due to coherence states can
be robust in terms of bit accuracy and high transmission rates.
Also, incorporating even a fairly simple error detection and
retransmission scheme can significantly improve bit accuracy
with a relatively small impact on peak bit rate.

D. Symbols Encoding Multi-bits

Besides just increasing the transmission speed, the volume
of information transmitted by a covert channel can be in-
creased by encoding multiple bits using symbols. Due to the
presence of multiple distinct latency bands corresponding to
(location, coherence state) combination pairs, we implement
a covert timing channel that transmits symbols encoding 2-
bits in every transmission. We utilize four combination pairs
(RExclc, LExclc, RSharedc, LSharedc) to encode one of four
distinct symbol values. The spy infers the symbol by issuing
load instructions (similar to our algorithm in Section VII-B)
and timing the load operation latency corresponding to com-
bination pairs.

Our experiments demonstrate a peak transmission rate of
around 1.1 Mbps, which is significantly higher than the
700 Kbps observed when using just one combination pair
of (location, coherence state) for encoding binary data for
transmission. Figure 11 shows spy’s reception of symbols
through timed load operations along with a magnified view
of the first 9 symbols or 18 bits (100101000110011011),
in which all four distinct symbols are observed. We note that

Fig. 11: Multi-bit symbol transmission using 4 combination
pairs to encode 2-bit symbols. Magnified view of first 18 bits
reception is shown, that captures all 4 possible symbol values.

more sophisticated symbol encoding mechanisms may achieve
even higher transmission rates, and our main goal here is
simply to demonstrate alternative ways that an adversary can
exploit in order to achieve higher bandwidths.

E. Discussion
Applicability to Different Coherence Protocols. Cache co-

herence protocols in multi-core/multi-processor systems can
be categorized into two broad classes: 1. snoop-based pro-
tocols, that broadcast coherence messages on a shared bus,
and 2. directory-based protocols, that offer higher scalability
by maintaining status of cache blocks in directories distributed
throughout the system. The Intel Xeon processors evaluated in
our experiments deploy a variant of directory-based protocol
with LLC’s core-valid-bits that direct coherence messages to
specific cores with possibly valid blocks. On other directory-
based systems, note that additional hops to the home directory
based on address filters can further create different latency
profiles for the adversaries to exploit. For snoop-based proto-
cols, reads on E-state blocks will involve accesses to private
caches of other cores since they hold the exclusive ownership
of these blocks, while reads on S-state blocks are satisfied by
the lower level shared caches that already have a clean copy
of the cache block [15]. This is somewhat similar to LExclc-
LSharedb configuration in Table I. Therefore, our findings
extend to different classes of protocols.

Non-inclusive and Exclusive Caches. We study inclusive
caches in this work. For blocks present (hits) in non-inclusive
LLCs, latency difference between S and E state are still

10

Effective rates under different noise levels

Coherent Cache
block in E state

Secure E and S States

28

Proc. store
Coherent Cache

block in EtM

Send upgrade req.
to LLC

Is LLC
block in E

state

LLC block
upgrades to M

LLC sends ack
to cache controller

Coherent cache
block changes to

M

Coherent Cache
tries store again

YesNo
LLC sends
NACK

