
COTSknight: Practical Defense against Cache Timing Channel
Attacks using Cache Monitoring and Partitioning Technologies

Fan Yao1,2, Hongyu Fang2, Miloš Doroslovački2, and Guru Venkataramani2

IEEE International Symposium on Hardware Oriented Security and Trust (HOST) 2019
May 6 - 10, 2019

The Hilton
Tysons Corner, USA

2 Department of ECE,
George Washington University,

Washington, DC

1 Department of ECE,
University of Central Florida

Orlando, FL

Emerging Threats: Information Leakage on
Contemporary Hardware

• Caches (e.g., Liu et al. S&P’15)

• Cache Coherence (e.g, Yao et al. HPCA’18)

• Branch predictor (e.g, Evtyushkin et al.
TACO’16)

• Speculation (Spectre and Meltdown)
….

Microarchitectural Resources
Hardware Infrastructure

…01010011…

Cache Timing Channels

Spy
Trojan

VictimInfers secrets based
on trojan/victim’s
cache accesses

• The dominant hardware information leakage attacks
• One of the most commonly shared resources
• Presents the largest attack surface

Modulates timings
of cache accesses
intentionally

Issues cache
accesses that are
secret dependent

Caches

 No hardware modification protects off-the-shelf machines
Incurs low overhead improves adoption

Existing Defense Techniques

• The need for a ready-to-use and performance-friendly solution

• Secure cache designs (e.g., NewCache IEEE Micro’16, SHARP ISCA’17)
• Not able to protect commodity systems
• Require hardware modifications (may involve high cost)

• Pre-emptive cache partitioning techniques (e.g., SecDCP DAC’16)
• Cause unnecessary performance degradation
• Can be difficult to scale

Cache Occupancy as the Indicator of Cache Timing Channels

m m m m h h h h

Spy primes

Spy probes

Trojan/Victim
accesses

Spy primesCache

Cache

Cache

Cache

Cache

Cache

Spy's Cache Occupancy

Trojan's Cache Occupancy

Spy’s cache occupancy

Trojan/Victim’s cache occupancy

Spy's Cache Occupancy

Trojan's Cache Occupancy

Spy’s cache occupancy

Trojan/Victim’s cache occupancy

Trojan/Victim
accesses

Spy probes

Emerging COTS Resource Managers

Cache occupancy capability Cache partitioning capability

CLOS0 IA32_L3_MASK_n_MSR[31:0] 0xFFFF

CLOS1 IA32_L3_MASK_n_MSR[31:0] 0xF000

CLOS2 IA32_L3_MASK_n_MSR[31:0] 0x0F00

CLOS3 IA32_L3_MASK_n_MSR[31:0] 0x00F0

CLOS NO. Capacity Bitmask

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1

Way Allocation

1 1 1 1 1 1 1 1

Hardware
Thread

IA32_PQR_ASSOC_MSR[63:32]: CLOS NO.
IA32_PQR_ASSOC_MSR[31:0]: RMID NO.

Application 1

Application 2

Application 3

Application 4

RMID1

RMID2

RMID3

CLOS1

CLOS2

CLOS3

• Allows fine-grained cache occupancy
monitoring

• Flexible runtime domain specification

• Enables way-based cache partitioning in last level
caches

• Dynamic partition decisions at runtime

• Intel cache monitoring (CMT) and cache allocation (CAT) technologies
• Designed to offer visibility of shared resource usage and QoS control
• ARM MPAM for Armv8-A architecture

Our Proposed Protection Framework: COTSknight

LLC Occupancy
Monitor
(CMT)

Occupancy
Pattern Analyzer

Cache Way
Allocation
Manager

Application
Domain(s)

partition policy inputs

notify partitioned domains

CAT
Interface

COTSknight

Records cache occupancy
traces for application domains

Captures the gain/loss pattern
via cache occupancy analysis

Allocates cache ways at runtime
to isolate suspicious domains

COTSknight: Cache Timing Channel Identification
• LLC Occupancy Monitor

• Per-domain cache occupancy monitoring

• Domains could be a thread, a process or VM instances

• Occupancy pattern analyzer

• Trace pre-processing: take the product of ∆x and ∆y as z (occupancy changes
for the pair of domains)

• Noise filtering can be applied to remove non-negative values

• Computes the normalized autocorrelation of z as r

• Detecting the linear relationship between ∆x and ∆y

• Extracts the repetitive patterns via power spectrum analysis of z

• Spikes in frequency domain indicates the repetitive patterns in z

•

COTSknight: Cache Timing Channel Identification

cache occupancy changes for trojan and spy

autocorrelogram power spectrum analysis

Isolated spike with
high signal power!

COTSknight: Dynamic Cache Way Allocation
• Proposed two different way allocation policies
• Aggressive policy
• Partitions pairs of suspicious domains
• Keep them isolated until one of them finishes execution

• Jail policy
• Partitions suspicious domains for a period of time (“put in jail”)
• Penalizes duration of isolation if same pair found suspicious again

Cache ways

• COTSknight prototype
• Based on Intel Xeon v4 processor
• Supports upto 16 CLOS (20-way per set)
• Cache timing channels: four attack variants based on previous studies

Experimental Setup

Attack variants on-off encoding: uses
single group of cache sets

pulse-position encoding:
uses multiple groups of
cache sets

serial protocol: two
processes access cache in
round robin fashion

serial on-off serial pulse-position

parallel protocol: two
processes access cache in
parallel

parallel on-off parallel pulse-position

covert
channels

side/covert
channels

Power Spectrum Analysis on Cache Timing Channels

serial on-off

serial pulse-position

parallel on-off

parallel pulse-position

• Observed concentrated spikes in the frequency
domain: strong indication of cache timing channels

• the frequency of the peak: attacker’s back and forth
eviction frequency

• signal power of the peak: signal strength of the
communication channel

Power Spectrum Analysis on Benign Workloads

(cal hmm) gob lib - low intensity

(lbm mil) sop Gem - high intensity

(Gem hmm) xal bwa - medium intensity

(Gem mcf) biz bwa - high intensity

Thresholding for Cache Timing Channel Determination

• Benign workloads: 98th percentile peak signal power < 25
• Timing channels: peak signal power well above 100 all the time
• Conservatively set a threshold of 50 to trigger cache allocation

Peak signal power CDF for benign workloads

Effectiveness of COTSknight

• Stopped all the instances of the attack variants
• Identifies all of the trojan-spy domain pairs within 5 consecutive

analysis windows after attack begins
• Partition trigger rate for benign workloads
• For low cache intensity workloads, no partition triggered
• Among all benign application pairs, only 6% of partitioning
• COTSknight runtime overhead
• Pair-wise power spectrum analysis is in milliseconds (monitor window

is 500ms)

Performance Impacts on Benign Workloads

• for benign workloads that trigger partitions

• average performance impact: -1% (speedup!)

• worst case slow-down: < 5%
• many applications involves speedup

• up to 9.2% performance improvements

• COTSknight alleviates unnecessary

interferences

Conclusions

• We proposed a novel application of COTS HW to enhance system security
• We designed COSTknight, a practical framework that identifies and stops

cache timing channels
• Evaluation of COTSknight showed that it brings negligible performance

impact to benign workloads (speedup in many cases)
• All of COTSknight’s components are built and run on real systems

18

Thanks! Questions?
Contacts

Fan Yao: fan.yao@ucf.edu
Guru Venkataramani: guruv@gwu.edu

mailto:fan.yao@ucf.edu
mailto:guruv@gwu.edu

Cache Miss vs. Cache Occupancy

Attack-only, cache miss patterns

Attack-only, cache occupancy patterns

Attack with noise, cache miss patterns

Attack with noise, cache occupancy patterns

Motivational Example

Cache occupancy changes for Trojan/victim and spy Cache occupancy changes for two benign programs

Observation 1: Timing channels in caches rely on mutual cache block
replacements for covert communication
Observation 2: Such activities create repetitive swing patterns in cache
occupancy (regardless of the communication protocols)

Performance impact on benign workloads where COTSknight allocator triggers LLC partition

Performance Impacts on Benign Workloads

Aggressive Policy

Jail Policy

Discussions

• Limitations of hardware monitoring
• the precision and sampling rate for cache occupancy
• maximum no. of CLOS supported (e.g., 16 for Intel Xeon E5-2698)
• CAT still allows cache hit in cache ways belonging to another domain
• could not stop flush+reload attacks
• security enhancement on CAT already proposed: DAWG (MICRO’18)
• Futuristic adversaries could attempt to bypass our detection process
• randomized bit transmission intervals, distortions of swing pulses
• COTSknight enables a host of advanced signal processing

