

Covert Timing Channels Exploiting Non-Uniform Memory Access based Architectures

Fan Yao, Guru Venkataramani and Miloš Doroslovački Department of Electrical and Computer Engineering The George Washington University Washington, DC, USA

GLSVLSI 2017, Alberta, Canada

Outline

Covert Channels

A class of information leakage attacks

Involve two colluding processes

One high privileged, insider process-trojanOne low privileged process-spy

Covert timing channel

Trojan and spy communicate by modulating timing

Different from side channels

Attacker probes the victim to infer secrets in side channel attacks
Trojan *intentionally* transmits secrets to spy in covert channel attacks

Microarchitecture Covert Timing Channel

Non-Uniform Memory Access

NUMA Access Latencies Results

Communication Protocol

Experimental Setup

Hardware Configuration

Dual Socket Xeon X5650 Processor
6 core Processor, 2.67 GHz
32KB L1 Cache, 256KB L2 Cache, 12MB shared L3 cache

Software Configuration

Trojan and Spy pinned to distinct sockets (*taskset*)
For communication, shared library is used (libgcrypt.so)

Timing Channel Demonstration

11/20/21

27th ACM Great Lakes Symposium on VLSI

Timing Channel Analysis

Observations

✓Inter-socket data transfers are manipulated by the Trojan

→ Can we infer timing channels from time interval between two consecutive remote accesses?

Time-Interval – PARSEC Benchmarks

Time-Intervals – NUMA Covert Timing Channels

Quantifying NUMA Covert Channels - Approach

Statistically Quantify the Time-Interval Distribution

Legitimate application's time-interval would be more random
Use Degree of Sparseness to quantify such character

Degree of Sparseness

$$S = \frac{M}{M - \sqrt{M}} (1 - \frac{\|P\|_1}{\sqrt{M} \times \|P\|_2})$$

Where M is the number of samples, P the the sample set
IIPII₁ and IIPII₂ are norm1 and norm2 of P respectively.
0 means not sparse and 1 means extremely sparse

Time-Interval – PARSEC Benchmarks

Time-Intervals – NUMA Covert Timing Channels

Conclusion

 We developed a covert timing channel that exploits NUMA latency differences.

We demonstrated an inter-socket multiple cache attack.

We performed statistical analysis to quantify the presence of such attacks.

Can help design defense mechanisms.

Simulation Setup

Gem5 – Cycle accurate full system simulation

8 CMP Cores
Two Level Cache Architectures
Minimal Linux distribution with kernel version 2.6.32

Benchmark

- ✓PARSEC Benchmark 2.1
 - Compiled with 8 threads (pthreads)
- A prototype implementation of Trojan and Spy
 - Trojan and Spy pinned to different cores

Quantifying NUMA Covert Channels - Results

✓ 0.81

Sufficiently different from the sparseness for normal applications

