
TS-Bat: Leveraging Temporal-Spatial Batching
for Data Center Energy Optimization

GLOBECOM 2017, Singapore

Motivation
§ Server Farms are generally over-provisioned
➚CPUs and other hardware are configured to satisfy peak load
➚On average, typical server farm utilization is < 30%

§ Current server farms lack efficient power management
➚ CPUs are kept active more than necessary
➚ Only shallow power saving states (e.g., Core C1 state) are used

§ A more effective energy optimization requires
➚A better characterization of multi-core power consumption
➚Energy-aware scheduling and control of processor low power states
➚Workload adaptivity (QoS constraints, job arrival rate & service time)

11/20/212

Understanding Multi-core Processor Power
§ Power Profile of the 10-core Intel Xeon E5 Processor

• Cores not active are in the Corresponding C state
• Power measurements through the RAPL interface

Observations from Processor Power Profile

§ Processors consume considerable base power

§ Higher utilization brings better power efficiency

11/20/214

To increase power efficiency and save energy

➚Either keep all the cores active è highest power efficiency
➚Or keep all the cores in idle state è enables processor sleep

Temporal Batching – Front End

11/20/215

Tarrival
batching delay

… TdispatchTarrival
batching delay

j1

j2

j6

σ
TdispatchTarrival

j1

j6 j5 j4 j3 j2 j1

batching bufferTdispatch

Job Batch Processing – Back End

11/20/216

è Jobs are buffered in the local queue of the server
è For a C core processor, every C jobs can be executed simultaneously

Package Sleep

scheduled processor

Package active

j6 j5 j4 j3 j2 j1local queue

j1
j2
j3
j4

simultaneous multi-requests processing

Temporal Batching Problem Formulation

§ Determine the max number of jobs to be batch
§ For each job i
➚Batching delay: Bi = (K–i)/λ + σ
➚Queuing delay: Ui =S95∗(i−1)/C+W
➚Total Delay: Di = Bi + Ui

§Find max K so that that :
Di + S95 ≤ Q

11/20/217

∀i ∈ [1,K]

λ : job arrival rate
C : number of cores per server
Q : target tail latency constraint
S : service time distribution,
S95: 95th percentile service time
σ :processor wakeup latency

Integration with Spatial Batching

§ Group jobs onto specific servers

§ Instead of evenly distributing load…
➚Keep a subset of CPUs in active state
➚Create opportunities for other servers to enter deep sleep states

– Cuts down power significantly

§ Challenges: How to choose idle and active servers?

11/20/218

Temporal + Spatial Batching – Scale-up

11/20/219

Temp. Bat. Spatial Bat.

Front-end /Load
Balancer

…

t1t2t3

t4t5
t6

requests

Server Pool

• Spatial batching schedules batched jobs to an estimated idle server.
• Search strategy is first fit (with a predetermined order).
• Server order could be shuffled periodically to even resource wear-out.

Experimental Setup
§ Testbed
➚Temporal Batching – single server

– Intel Xeon E5 10 core process
➚Temporal Batching + Spatial Batching

– Cluster of 16 servers
– Each server equipped with Intel Xeon 5650 6-core server
– Network : Netgear 24-port Gigabit switch (start topology)

§ Software Framework
➚Load generator: httperf
➚Application server: apache httpd
➚Benchmark: CGI script running PARSEC-2.1 benchmarks at back-end

§ The targeted QoS constraint
– 95th percentile latency* is less than 2× job service time *

11/20/2110

*95th Percentile latencies are adopted as measurements of QoS constraints in Latency critical
applications – Rubik, Micro 2014; PEGASUS, ISCA 2014; Tailbench, ASPLOS 2016

Temporal Batching – C State Residency

0%

20%

40%

60%

80%

100%

 0 300 600 900 1200 1500 1800

C
 S

ta
te

s
R

es
id

en
cy

 B
re

ak
do

w
n

Time (s)

Pkg. C0 Pkg. C2 Pkg. C3 Pkg. C6

0%

20%

40%

60%

80%

100%

 0 300 600 900 1200 1500 1800

C
 S

ta
te

s
R

es
id

en
cy

 B
re

ak
do

w
n

Time (s)

Pkg. C0 Pkg. C2 Pkg. C3 Pkg. C6

0%

20%

40%

60%

80%

100%

 0 300 600 900 1200 1500 1800

C
 S

ta
te

s
R

es
id

en
cy

 B
re

ak
do

w
n

Time (s)

Pkg. C0 Pkg. C2 Pkg. C3 Pkg. C6

0%

20%

40%

60%

80%

100%

 0 300 600 900 1200 1500 1800

C
 S

ta
te

s
R

es
id

en
cy

 B
re

ak
do

w
n

Time (s)

Pkg. C0 Pkg. C2 Pkg. C3 Pkg. C6

Bodytrack, without T. B. (Util. 10%)

Bodytrack, with T. B. (Util. 10%)

Bodytrack, without T. B. (Util. 30%)

Bodytrack, with T. B. (Util. 30%)

Temporal Batching – Response Time

Bodytrack, Job Response time CDF (QoS 5x)

��

���

���

���

���

����

� ��� ��� ��� ��� ����

�
��

��
��
��
	

��
���
�
���
�
��
��
���
�

�	
��
	 ���	 ��
�

(528ms)

��

���

���

���

���

����

� ��� ��� ��� ��� ����

�
��

��
��
��
	

��
���
�
���
�
��
��
���
�

�	
��
	 ���	 ��
�

(925ms)

Bodytrack, Job Response time CDF (QoS 5x)

Bodytrack: average service time 108 ms
✓ For QoS 5x: 95th response time 528 ms < target latency 540 ms
✓ For QoS 10x: 95th response time 925 ms < target latency 1080 ms

è Quality of Service constraints are effectively maintained

Energy Savings

0%

10%

20%

30%

40%

50%

60%

10% 20% 30%

En
er

gy
 S

av
in

gs

Average Utilization

QoS-2 QoS-5 QoS-10

0%

20%

40%

60%

80%

100%

Bodytrack Raytrace Vips Fluidanimate Ferret

En
er

gy
 S

av
in

g

Temporal Batching TS-Bat
Bodytrack, Energy saving of Temporal batching with different QoS

Energy saving of using Temporal and Spatial Batching, different workloads

Conclusion
§ We characterized the power and performance of multi-
core processor in data centers.

§ We proposed TS-Bat, a QoS-aware energy optimization
framework that combines temporal and spatial batching.

§ TS-Bat achieved upto 68% processor energy saving
under various QoS constraints.

11/20/2114

