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Motivation
§ Server Farms are generally over-provisioned
➚CPUs and other hardware are configured to satisfy peak load
➚On average, typical server farm utilization is < 30%

§ Current server farms lack efficient power management
➚ CPUs are kept active more than necessary
➚ Only shallow power saving states (e.g., Core C1 state) are used

§ A more effective energy optimization requires
➚A better characterization of multi-core power consumption
➚Energy-aware scheduling and control of processor low power states
➚Workload adaptivity (QoS constraints, job arrival rate & service time)
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Understanding Multi-core Processor Power
§ Power Profile of the 10-core Intel Xeon E5 Processor

• Cores not active are in the Corresponding C state
• Power measurements through the RAPL interface



Observations from Processor Power Profile

§ Processors consume considerable base power

§ Higher utilization brings better power efficiency 
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To increase power efficiency and save energy

➚Either keep all the cores active   è highest power efficiency 
➚Or keep all the cores in idle state è enables processor sleep



Temporal Batching – Front End
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Job Batch Processing – Back End
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è Jobs are buffered in the local queue of the server
è For a C core processor, every C jobs can be executed simultaneously
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Temporal Batching Problem Formulation

§ Determine the max number of jobs to be batch
§ For each job i
➚Batching delay: Bi = (K–i)/λ + σ
➚Queuing delay: Ui =S95∗(i−1)/C+W 
➚Total Delay: Di = Bi + Ui

§Find max K so that that                   :
Di + S95 ≤ Q
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∀i ∈ [1,K ]

λ : job arrival rate
C : number of cores per server
Q : target tail latency constraint
S : service time distribution, 
S95: 95th percentile service time
σ :processor wakeup latency



Integration with Spatial Batching

§ Group jobs onto specific servers

§ Instead of evenly distributing load…
➚Keep a subset of CPUs in active state
➚Create opportunities for other servers to enter deep sleep states

– Cuts down power significantly

§ Challenges: How to choose idle and active servers?
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Temporal + Spatial Batching – Scale-up
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• Spatial batching schedules batched jobs to an estimated idle server.
• Search strategy is first fit (with a predetermined order).
• Server order could be shuffled periodically to even resource wear-out.



Experimental Setup
§ Testbed
➚Temporal Batching – single server

– Intel Xeon E5 10 core process
➚Temporal Batching + Spatial Batching

– Cluster of 16 servers
– Each server equipped with Intel Xeon 5650 6-core server
– Network : Netgear 24-port Gigabit switch (start topology)

§ Software Framework
➚Load generator: httperf
➚Application server: apache httpd
➚Benchmark: CGI script running PARSEC-2.1 benchmarks at back-end

§ The targeted QoS constraint
– 95th percentile latency* is less than 2× job service time *
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*95th Percentile latencies are adopted as measurements of QoS constraints in Latency critical 
applications – Rubik, Micro 2014; PEGASUS, ISCA 2014; Tailbench, ASPLOS 2016



Temporal Batching – C State Residency
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Temporal Batching – Response Time

Bodytrack, Job Response time CDF (QoS 5x)

��

���

���

���

���

����

� ��� ��� ��� ��� ����

�
��

��
��
��
	


��
���
�
���
�
��
��
���
�

�	
��
	 ���	 ��
�

(528ms)

��

���

���

���

���

����

� ��� ��� ��� ��� ����

�
��

��
��
��
	


��
���
�
���
�
��
��
���
�

�	
��
	 ���	 ��
�

(925ms)

Bodytrack, Job Response time CDF (QoS 5x)

Bodytrack: average service time 108 ms
✓ For QoS 5x: 95th response time 528 ms < target latency 540 ms
✓ For QoS 10x: 95th response time 925 ms < target latency 1080 ms

è Quality of Service constraints are effectively maintained



Energy Savings
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Conclusion
§ We characterized the power and performance of multi-
core processor in data centers.

§ We proposed TS-Bat, a QoS-aware energy optimization 
framework that combines temporal and spatial batching.

§ TS-Bat achieved upto 68% processor energy saving 
under various QoS constraints.
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