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Motivation

‘= Server Farms are generally over-provisioned
7'CPUs and other hardware are configured to satisfy peak load
7'On average, typical server farm utilization is < 30%

= Current server farms lack efficient power management

7" CPUs are kept active more than necessary
7 Only shallow power saving states (e.g., Core C1 state) are used

= A more effective energy optimization requires
7" A better characterization of multi-core power consumption
7 Energy-aware scheduling and control of processor low power states
7"Workload adaptivity (QoS constraints, job arrival rate & service time)
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Understanding Multi-core Processor Power

‘= Power Profile of the 10-core Intel Xeon E5 Processor
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Observations from Processor Power Profile

‘= Processors consume considerable base power

= Higher utilization brings better power efficiency

7 Either keep all the cores active =» highest power efficiency
7 Or keep all the cores in idle state = enables processor sleep
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Temporal Batching — Front End
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Job Batch Processing — Back End
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simultaneous multi-requests processing

=» Jobs are buffered in the local queue of the server
=» For a C core processor, every C jobs can be executed simultaneously




Temporal Batching Problem Formulation

‘= Determine the max number of jobs to be batch

= For each job i
7'Batching delay: B, = (K—i)/A + ©
7' Queuing delay: U; =S9x«(i—-1)/C+W
7 Total Delay: D, = B; + U,

" Find max K so that that Vi €[1,K]:

D, +S®=<Q
s - - "F-"F"""""""7”"7”""—"”""”""”"”" \
A : job arrival rate

Q : target tail latency constraint
S : service time distribution,
S%5: 95th percentile service time
\ o :.processor wakeup latency /

(
I
| C : number of cores per server
I
I
I
I
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Integration with Spatial Batching

‘= Group jobs onto specific servers

* Instead of evenly distributing load...
7'Keep a subset of CPUs in active state
7" Create opportunities for other servers to enter deep sleep states
— Cuts down power significantly

» Challenges: How to choose idle and active servers?
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Temporal + Spatial Batching — Scale-up
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« Spatial batching schedules batched jobs to an estimated idle server.
« Search strategy is first fit (with a predetermined order).

« Server order could be shuffled periodically to even resource wear-out.
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Experimental Setup

\.

‘= Testbed

= Software Framework

* The targeted QoS constraint

7 Temporal Batching — single server
— Intel Xeon E5 10 core process
7 Temporal Batching + Spatial Batching
— Cluster of 16 servers
— Each server equipped with Intel Xeon 5650 6-core server
— Network : Netgear 24-port Gigabit switch (start topology)

7Load generator: httoerf
7" Application server: apache httpd
7'Benchmark: CGl script running PARSEC-2.1 benchmarks at back-end

— 95t percentile latency” is less than 2x job service time *

*95th percentile latencies are adopted as measurements of QoS constraints in Latency critical
applications — Rubik, Micro 2014; PEGASUS, ISCA 2014, Tailbench, ASPLOS 2016
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Temporal Batching — C State Residency
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Temporal Batching — Response Time
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Bodytrack: average service time 108 ms
v For QoS 5x: 95t response time 528 ms < target latency 540 ms
v For QoS 10x: 95t response time 925 ms < target latency 1080 ms

= Quality of Service constraints are effectively maintained




Energy Savings
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Conclusion

N

‘= We characterized the power and performance of multi-
core processor in data centers.

= We proposed TS-Bat, a QoS-aware energy optimization
framework that combines temporal and spatial batching.

= TS-Bat achieved upto 68% processor energy saving
under various QoS constraints.
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