! .- ——L:[_l_é s 4‘.’:“ I.»"l
B 7 THE GEORGE [lliE SIS
> WASHINGTON [iEfe &
UNIVERSITY [=€

3 F't;\‘ WASHINGTON, DC

TS-Bat: Leveraging Temporal-Spatial Batching
for Data Center Energy Optimization

GLOBECOM 2017, Singapore

Motivation

‘= Server Farms are generally over-provisioned
7'CPUs and other hardware are configured to satisfy peak load
7'On average, typical server farm utilization is < 30%

= Current server farms lack efficient power management

7" CPUs are kept active more than necessary
7 Only shallow power saving states (e.g., Core C1 state) are used

= A more effective energy optimization requires
7" A better characterization of multi-core power consumption
7 Energy-aware scheduling and control of processor low power states
7"Workload adaptivity (QoS constraints, job arrival rate & service time)

. J

112021 QW

Understanding Multi-core Processor Power

‘= Power Profile of the 10-core Intel Xeon E5 Processor

80
70 -
0) - - -~ - - = = - = _

Power (Watts)»
N W R O
= G O 109
| | | |
| | | |

10 -

g 1 2 . .3.4.5.86_.7 8 9 1D
Number of Active Cores

[COC— Cli=—= C3 === (C6 |

Cores not active are in the Corresponding C state
Power measurements through the RAPL interface

Observations from Processor Power Profile

‘= Processors consume considerable base power

= Higher utilization brings better power efficiency

7 Either keep all the cores active =» highest power efficiency
7 Or keep all the cores in idle state = enables processor sleep

o —————

. J

112021 QW

Temporal Batching — Front End

Ji
T _______ batching delay I’ batching buffer
Tarrival . dispatch
J2
T ,]: /FP J1
~ batching delay
Lirrival dispatch
J6 T T T T
)|\ Wk Js [Ja|Ja|J2 |
- -
Tarrival Tdispatch

11/20/21 GW

Job Batch Processing — Back End

()

local queue — Jo | s | Ja | J3 | J2 | Ju

simultaneous multi-requests processing

=» Jobs are buffered in the local queue of the server
=» For a C core processor, every C jobs can be executed simultaneously

Temporal Batching Problem Formulation

‘= Determine the max number of jobs to be batch

= For each job i
7'Batching delay: B, = (K—i)/A + ©
7' Queuing delay: U; =S9x«(i—-1)/C+W
7 Total Delay: D, = B; + U,

" Find max K so that that Vi €[1,K]:

D, +S®=<Q
s - - "F-"F"""""""7”"7”""—"”""”""”"”" \
A : job arrival rate

Q : target tail latency constraint
S : service time distribution,
S%5: 95th percentile service time
\ o :.processor wakeup latency /

(
I
| C : number of cores per server
I
I
I
I

J

112021 QW

Integration with Spatial Batching

‘= Group jobs onto specific servers

* Instead of evenly distributing load...
7'Keep a subset of CPUs in active state
7" Create opportunities for other servers to enter deep sleep states
— Cuts down power significantly

» Challenges: How to choose idle and active servers?

. J

112021 QW

Temporal + Spatial Batching — Scale-up

r

requests 4 Front-end /Load

|:> Balancer

Spatial Bat.
@ 8 U
® 0 9 G
=

« Spatial batching schedules batched jobs to an estimated idle server.
« Search strategy is first fit (with a predetermined order).

« Server order could be shuffled periodically to even resource wear-out.

\.

N

\

J

GW

Experimental Setup

\.

‘= Testbed

= Software Framework

* The targeted QoS constraint

7 Temporal Batching — single server
— Intel Xeon E5 10 core process
7 Temporal Batching + Spatial Batching
— Cluster of 16 servers
— Each server equipped with Intel Xeon 5650 6-core server
— Network : Netgear 24-port Gigabit switch (start topology)

7Load generator: httoerf
7" Application server: apache httpd
7'Benchmark: CGl script running PARSEC-2.1 benchmarks at back-end

— 95t percentile latency” is less than 2x job service time *

*95th percentile latencies are adopted as measurements of QoS constraints in Latency critical
applications — Rubik, Micro 2014; PEGASUS, ISCA 2014, Tailbench, ASPLOS 2016

J

10

112021 QW

Temporal Batching — C State Residency

M Pkg.CO W Pkg.C2 = Pkg.C3 W Pkg. C6
100%

wn

80%

60%

40%

20%

C States Residency Breakdo

0%
0 300 600 900 1200 1500 1800
Time (s)

Bodytrack, without T. B. (Util. 10%)

I Pkg.CO W Pkg.C2 == Pkg.C3 W Pkg. C6
100%

wn

80%

60%

40%

20%

C States Residency Breakdo

0%
0 300 600 900 1200 1500 1800
Time (s)

Bodytrack, with T. B. (Util. 10%)

M Pkg.CO W Pkg.C2 = Pkg.C3 W Pkg.C6
100%

wn

80%

60%

40%

20%

C States Residency Breakdo

0%
300 600 900 1200 1500 1800
Time (s)

Bodytrack, without T. B. (Util. 30%)

W Pkg.CO W Pkg.C2 = Pkg.C3 W Pkg.C6
100%

o

wn

80%

60%

40%

20%

C States Residency Breakdo

0%
300 600 900 1200 1500 1800
Time (s)

Bodytrack, with T. B. (Util. 30%)

o

Temporal Batching — Response Time

100%

100%
80% 80%
60% 60%
40% 40%

20% 20%

Cumulative Distribution Function

Cumulative Distribution Function

0% ' ' : ' ' 0% I] |]
0 200 400 600 800 1000 0 200 400 600 800 1000

Response Time (ms) Response Time (ms)

Bodytrack, Job Response time CDF (QoS 5x) Bodytrack, Job Response time CDF (QoS 5x)

Bodytrack: average service time 108 ms
v For QoS 5x: 95t response time 528 ms < target latency 540 ms
v For QoS 10x: 95t response time 925 ms < target latency 1080 ms

= Quality of Service constraints are effectively maintained

Energy Savings

r

SQoS-2 ®QoS-5 ¥QoS-10

60%
©50% 1~ RSy
c

F40% - RN RN e
0]

530% 1B BN RN
£ 20% 1 PN AN RN

Ll
10% 1NN NN NN -
0% N S
10% 20% 30%

Average Utilization
Bodytrack, Energy saving of Temporal batching with different QoS

BTemporal Batching DOTS-Bat

100%

S

60% [t -1} [

Energy Saving
N
Q
X

20% 4| P b]

0%
Bodytrack Raytrace Vips Fluidanimate Ferret

Energy saving of using Temporal and Spatial Batching, different workloads

Conclusion

N

‘= We characterized the power and performance of multi-
core processor in data centers.

= We proposed TS-Bat, a QoS-aware energy optimization
framework that combines temporal and spatial batching.

= TS-Bat achieved upto 68% processor energy saving
under various QoS constraints.

. J

112021 QW

