

WASP: Workload Adaptive Energy-Latency Optimization in Server Farms using Server Low-Power States

Fan Yao, Jingxin Wu, Suresh Subramaniam, Guru Venkataramani Department of Electrical and Computer Engineering The George Washington University Washington, DC, USA

CLOUD 2017, Honolulu, Hawaii, USA

The Era of Data Explosion

- Tremendous advances in cloud computing
 Size of computing infrastructure grows rapidly
- Modern data centers are increasingly power-hungry
 - Power/cooling cost of data center increased over 400% last decade
 IT equipment dominates the power consumption
- Limiting server farm energy envelope is critical

Server Farm Energy Inefficiency

Servers are typically provisioned to match peak load

Server farms are often under-utilized (30% utilization is common)
 Wasteful energy is spent in keeping extra servers active

Today's server lacks energy-proportionality

When active, server at 30% utilization consumes 60% of peak power
 When idle, server consumes 20% ~ 55% of peak power

Server Low-power States

Exploration of Low Power States

Two illustrative policies

- The Active-Idle configuration
 - Server alternates between active (C0) and idle state (C1)

- ✓ The Delay-Doze (τ =c) configuration
 - Transitions among active (*C0*), shallow sleep (*C6*) and deep sleep (system sleep *S3*)
 - Processor enters C6 when idle
 - Wait for τ seconds in C6 before entering system sleep.

Motivational Example

11/20/21 <u>GW</u>

Workload Adaptive Energy-Latency Optimization

Optimize energy saving

Leverage system/processor low power states

Maintain QoS constraints

Satisfy tail latency requirements (e.g.,90th percentile response time)

Adaptive to distinct workload

Adjust energy saving strategies according to various workloads

WASP Framework: Global Level

WASP Framework: Local Level

WASP Algorithm

Job scheduler dispatches jobs to schedulable servers

- Servers in active state but with free cores
- Server in idle state with delay timer not expired
- ✓ Job scheduler has a priority to select shallow sleep servers
- When no such sever available, select deep sleep servers

Parameters to set:

T_s: threshold (pending jobs per core) to put a server to sleep
 T_w: threshold (pending jobs per core) to wake up a server
 T: waiting time threshold to enter system sleep state

Simulation Setup

Developed an event-driven simulator

- Model job queuing in multi-core, multi-server system
- Models server processor and platform power
- Reports job response time and energy consumption statistics

The simulated server farm configuration

- ✓ 50 servers
- Each core is able to serve one job at a time

Simulation settings

Small workload (average service time 1~10 ms, e.g., web services)
 Large (average service time 100~200 ms, e.g., DNS services)
 First 10,000 jobs are ignored for simulation warm-up

Component	Core sleep	Core sleep	Pkg. sleep	System
	C1*	C6 †	C6	sleep
CPU	33.0+3.1 ×	$23.0+3.8 \times$	8.3	83
	$(n_a - 1)$	$(n_a - 1)$		0.5
RAM	10.8	10.8	4.9	1.4
Platform	45.5	45.5	23.6	4.8
Total Power	89.3+3.1 ×	79.3+3.8 ×	36.8	1/1 5
	$(n_a - 1)$	$(n_a - 1)$	50.0	14.3

 n_a : the number of cores in active state Core sleep C1: processor is active, idle cores are in c1 state Core sleep C6: processor is active, idle cores are in c6 state Pkg. sleep C6: entire processor in C6 state

CPU power is based on linear regression model using power profiles for the Intel Xeon E5-2680 processor

Pareto-optimal Space Exploration

IEEE CLOUD 2017

Exploration Observations

 т is independent of utilization levels, but is job-size dependent.

• T_w is independent of utilization levels.

 T_s values are independent of job execution latencies and utilization levels.

System Evaluation

A cluster of 10 servers ✓ Dell M1000e cluster Each server is equipped with 12 cores Dual-socket Intel X5650 processor ✓12GB DRAM ✓256GB Disk **Deployed with apache web service** Wikipedia and NLANR workload QoS Goal: 90th percentile latency as 2x service time

Energy Savings for Wikipedia Workload

Bursty NLANR workloads

Workload Patterns

11/20/21 GW

IEEE CLOUD 2017

Energy Savings on Cluster

Conclusions

We proposed techniques that makes smart use of processor/system low-power

We performed an exploration of Pareto-optimal Energy-Latency tradeoffs

We implement a prototype on real system and showed upto 57% energy saving with QoS guarantees.

IEEE CLOUD 2017